Indian Institute of Science
 E9-252: Mathematical Methods and Techniques in Signal Processing
 Instructor: Shayan G. Srinivasa
 Mid Term Exam\#1, Fall 2013

Name and SR.No:

Instructions:

- This is an open book, open notes exam. No wireless allowed.
- The time duration is 3 hrs .
- There are five main questions. None of them have negative marking.
- Attempt all of them with careful reasoning and effort.
- Do not panic, do not cheat.
- Good luck!

Question No.	Points scored
1	
2	
3	
4	
5	
Total points	

Problem 1: Examine if the following statements are true or false with correct reasoning. Random guessing or incorrect reasoning fetches zero credit. A statement is true if it is generic for all cases. A counter example is enough to make it false. All sub-parts of this problem carry equal credit.
(1) Alice and Bob play a game. Each one chooses a random number uniformly within the interval $[0,1]$. The probability that sum of the numbers equals one is zero.
(2) The input to an LTI filter is a WSS random process. The output is always a WSS process.
(3) The signals $\{\cos (t), \cos (2 t)\}$ over $[0,2 \pi]$ are linearly dependent.
(4) A causal LTI system is cascaded with another non-causal LTI. The overall system is always noncausal.

Problem 2: This problem has two parts.
(1) A discrete LTI system takes an input $x[n]$ and yields $y[n]$. Obtain the necessary and sufficient conditions for the impulse response $h[n]$ so that $\max \{|x[n]|\} \geq \max \{|y[n]|\}$.
(10 pts.)
(2) Let $\left(A_{1}, \mathbf{b}_{1}, \mathbf{c}_{1}^{T}\right)$ and $\left(A_{2}, \mathbf{b}_{2}, \mathbf{c}_{2}^{T}\right)$ denote two systems in state space representation. Obtain the overall system parameters $\left(A, \mathbf{b}, \mathbf{c}^{T}\right)$ when the two systems are connected in (a) parallel (b) series. (10 pts.)

Problem 3: Consider a binary symmetric channel that we discussed in the class. The source sends ' 1 ' with probability p and ' 0 ' with probability $1-p$. Due to noise, each bit is received incorrectly with a cross over probability ϵ.
(1) If we transmit the same information bit n times over the channel such that each transmission is statistically independent, determine the probability p_{n} that the information bit is ' 0 ' given that we observed a string of n zeros at the output.
(2) Determine $\lim _{n \rightarrow \infty} p_{n}$. Interpret your solution.
(3) Suppose an unknown bit is transmitted and the received bit is a ' 0 '. Suppose the 'same' unknown bit is retransmitted again and we receive a ' 0 '. What is the conditional probability that the second bit we received is a ' 0 ' given that the first bit received is a ' 0 '?

Problem 4: This problem has 2 parts.

(1) If \mathcal{W}_{1} and \mathcal{W}_{2} are subspaces of a vector space \mathcal{V}, show that $\mathcal{W}_{1} \cup \mathcal{W}_{2}$ is a subspace iff $\mathcal{W}_{1} \subset \mathcal{W}_{2}$ or $\mathcal{W}_{2} \subset \mathcal{W}_{1}$.
(12 pts.)
(2) Suppose $\left\{\alpha_{i}\right\}_{i=1}^{n}$ be distinct real numbers. Examine if the exponential functions $\left\{e^{\alpha_{i} t}\right\}_{i=1}^{n}$ are all linearly independent over the space of real numbers.

Problem 5: Consider the inner product space of signals defined over $[-1,1]$.
(1) Show that the signals 1 and t are orthogonal.
(2) Obtain the least squares approximation of the signal $s(t)=t^{\frac{1}{2 n+1}}$ over the interval $[-1,1]$ using an orthonormal basis for the subspace spanned by $\{1, t\}$. Show all your steps.

