Indian Institute of Science
 E9-252: Mathematical Methods and Techniques in Signal Processing
 Instructor: Shayan G. Srinivasa
 Mid Term Exam\#2, Fall 2013

Name and SR.No:

Instructions:

- This is an open notes exam. Four A4 pages of written material on both sides is allowed. No wireless is allowed.
- The time duration is 3 hrs .
- There are four main questions. None of them have negative marking.
- Attempt all of them with careful reasoning and effort for partial credit.
- Do not panic, do not cheat.
- Good luck!

Question No.	Points scored
1	
2	
3	
4	
Total points	

Problem 1: This problem has 2 parts.
(1) Simplify the multirate systems shown in Figure 1 as best as you can. Obtain the frequency response $Y(z)$ in terms of $X(z)$.

Figure 1. Two different multirate systems are shown in (a) and (b).
(2) Consider two systems shown in Figures 2 (a) and (b). Let k be some integer. Prove that the two systems are equivalent i.e., $y_{0}[n]=y_{1}[n]$ when $h_{k}[n]=h_{0}[n] \cos \left[\frac{2 \pi k n}{L}\right]$. This is a structure where filtering followed by cosine modulation has the same effect as filtering with cosine modulated impulse response. Suppose $L=5$ and $k=1$. Let $X\left(e^{j w}\right)$ and $H\left(e^{j w}\right)$ be sketched as in Figure 2 (c). Sketch $Y\left(e^{j w}\right), Y_{0}\left(e^{j w}\right)$ and $U\left(e^{j w}\right)$.

Figure 2. Two different interpolation systems are shown in (a) and (b). The input and base filter responses are shown as well in (c).

Hint: The Fourier transform for $e^{j \omega_{0} n}$ is $2 \pi \delta\left(\omega-\omega_{0}\right)$ for $0<\omega<2 \pi$.

Problem 2: This problem has two parts.
(1) Examine if the system shown in Figure 3 is a perfect reconstruction system. Show all your steps clearly from first principles.

Figure 3. Delay filter bank.
(2) It is desired to build a circuit that works twice as fast for filtering downsampled signals through the filter $H(z)=\frac{1}{a+b z^{-1}}$. How would you accomplish this?

Problem 3: Let A be a linear transformation of vector x i.e., $y=A x$. Let C_{x} denote the covariance matrix of data vector x. In the class, we proved that the transform that decorrelates y corresponds to Φ^{T} where Φ is the unitary matrix of eigenvectors corresponding to C_{x}. Suppose we intend to transform the covariance of y to a scaled version of the identity matrix i.e., $C_{y}=\sigma^{2} I$. Show that $A=\sigma \Lambda^{-\frac{1}{2}} \Phi^{T}$, where Λ is a diagonal matrix of eigenvalues of C_{x}. Interpret the significance of this result geometrically for a scatter plot of 2-D points lying within an ellipse described by $\frac{\left(x_{1}-\mu_{1}\right)^{2}}{a^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{b^{2}}=1$.

Problem 4: We want to model a signal $x[n]$ using an all-pole model of the form $H(z)=\frac{b(0)}{1+z^{-N}\left[\sum_{k=1}^{p} a_{p}(k) z^{-k}\right]}$.
(1) From first principles, derive the normal equations that define the coefficients $a_{p}(k)$ that minimizes the Prony error $E_{p}=\sum_{n=0}^{\infty}|e(n)|^{2}$.
(2) Derive the expression for minimum error. How do you set $b(0)$?

