E9-252: Mathematical methods and techniques in signal processing
Home Work \#1 (Due $3^{\text {rd }}$ September 2013 in class)
Review of signals and systems
Late Submission Policy: Actual points scored $=$ Correct points scored $* \mathrm{e}^{-\# d a y s ~ l a t e ~}$

Problem Sets:

1) Using the definition of linearity, examine if the ideal delay and the moving average systems are linear.
2) A discrete LTI system has an impulse response $h[n]$. If the input $x[n]$ is periodic with period N, i.e., $x[n+N]=x[n]$, examine if the output $y[n]$ is periodic.
3) Consider the first order difference operation:

$$
y[n]=x[n]-x[n-1]=\nabla x[n] .
$$

(a) Show that the system is LTI.
(b) Find and sketch the frequency response of the system.
(c) Is convolution operation commutative? Prove your result.
(d) Suppose $x[n]=f[n] * g[n]$, show that $\nabla x[n]=f[n] * \nabla g[n]=\nabla f[n] * g[n] \quad$ (* is the discrete convolution operation) .
(e) Find the impulse response of a system $h_{i}(n)$ which when cascaded with the first order difference system can recover the input. i.e.,
$h_{i}[n] * \nabla x[n]=x[n]$.
4) Obtain the state variable representation of the following transfer function from first principles. (Moon and Stirling, problem 1.4.15 (c))
$H(z)=\frac{1-2 z^{-1}}{1+0.5 z^{-1}+0.06 z^{-2}}$.
5) Let $S=\left[A, b, c^{T}, d\right], d \neq 0$ denote the state variable representation of an LTI system $H(z)$. What would be the state variable representation of $1 / H(z)$? Express your answer in terms A, b, c^{T}, d. (Moon and Stirling, problem 1.4.21)
6) Problem 1.4.30 parts (a) and (b) from Moon and Stirling.

