Indian Institute of Science

E9-252: Mathematical Methods and Techniques in Signal Processing

Instructor: Shayan G. Srinivasa Mid Term Exam#1, Fall 2015

Name and SR.No:

Instructions:

- Only four A4 sheets of paper with written notes on both sides are allowed.
- The time duration is 3 hrs.
- There are five main questions. None of them have negative marking.
- Attempt all of them with careful reasoning and justification for partial credit.
- Do not panic, do not cheat.
- Good luck!

Question No.	Points scored
1	
2	
3	
4	
5	
Total points	

PROBLEM 1: Examine if the following statements are true or false with correct reasoning. Random guessing or incorrect reasoning fetches zero credit. A statement is true if it is generic for all cases. A counter example is enough to make it false. All sub-parts of this problem carry equal credit.

- (1) Let \bar{v} be the eigenvector for a square matrix A with a corresponding eigenvalue zero. \bar{v} is also an eigenvector for A^n for integers n > 1.
- (2) Consider the random process $s(t) = A\sin(\omega t)$, where A is Gaussian distributed with mean zero and variance σ^2 . The frequency ω is deterministic. s(t) is a stationary process.
- (3) Upsampling of a non-zero discrete time signal by a factor L>1 always causes images within the base band.
- (4) Consider a discrete time signal x[n] at D samples/s coded at c bits/sample with energy predominantly in the low pass region. Suppose we pass this signal through a two channel QMF bank so that the output of the analysis bank is coded at a bits and b bits per sample in the low and high frequency subbands respectively during transmission. We can achieve a compression in the data rate if 2c > a + b.
- (5) If an LTI system is causal, it is always stable.

(20 pts.)

PROBLEM 2: This problem has 3 parts.

(1) Let
$$\{\bar{v}_i\}_{i=1}^n$$
 be a collection of orthonormal vectors and $\{a_i\}_{i=1}^n$ be scalars.
Prove that $||\sum_{i=1}^n a_i \bar{v}_i||^2 = \sum_{i=1}^n |a_i|^2$. (8 pts.)

(2) Let the vector space $\mathcal{V}_1 \perp \mathcal{V}_2$.

(a) Prove that \mathcal{V}_2 is a subspace of \mathcal{V}_1^{\perp} . State the converse and verify if it is true.

- (b) Prove that $V_1 \cap V_2 = \{\overline{0}\}$. (8 pts.) (3) Consider the signals $f_1(t) = 1$ and $f_2(t) = t$ over [-1,1]. Are they orthonormal? Obtain a closest linear signal approximation to $s(t) = t^2$ over [-1,1]. Plot the approximate signal representation on a signal coordinate system. (9 pts.)

PROBLEM 3: Consider the structure shown in Figure 1, where W is the 3×3 DFT matrix. This is a three channel synthesis bank with three filters $F_0(z)$, $F_1(z)$ and $F_2(z)$. (For example, $F_0(z) = Y(z)/Y_0(z)$ with $y_1[n]$ and $y_2[n]$ set to zero.)

FIGURE 1. Three channel synthesis bank

- (1) Assuming $R_0(z)=1+z^{-1}, R_1(z)=1-z^{-2}, R_2(z)=2+3z^{-1}$, find an expression for the three synthesis filters $F_0(z), F_1(z)$ and $F_2(z)$. (15 pts.) (2) Let the magnitude of $F_1(z)$ be as shown above. Plot the frequency response of $|F_0(e^{j\omega})|$ and
- $|F_2(e^{j\omega}|.$ (5 pts.)

PROBLEM 4: A certain sampling rate conversion system requires downsampling a signal at 100 Msamples/s to 40 Msamples/s. From first principles, derive a fully efficient architecture using downsamplers and expanders. Sketch the schematic of your multirate system. (25 pts.)

PROBLEM 5: The input to an LTI system is a WSS random process. Is the output WSS? Justify. You can assume that the LTI filter response is absolutely summable. (10 pts.)