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Problem 1. Provide an example of a 2D FIR filter with the following impulse response properties (a) non-causal
(b) causal but unstable. Repeat this for the 2D IIR case. Justify your steps.

Solution. 2D FIR filter, non-causal:

h (t1, t2) = (u (t1 +N)− u (t1 −N)) (u (t2 +N)− u (t2 −N))

=

{
1, −N ≤ t1 ≤ N and −N ≤ t2 ≤ N,
0, otherwise.

for some positive integer N . The filter has finite number of non-zero coefficient and hence is a FIR filter.
Since h (−1,−1) = 1, the filter is non-causal.

2D FIR filter, causal but unstable:

h (t1, t2) =


1, −N ≤ t1 ≤ N and −N ≤ t2 ≤ N,
∞, (t1, t2) = (N + 1, N + 1) ,

0, otherwise
is a FIR causal filter which is not BIBO stable.

All FIR filters with finite coefficients are BIBO stable. Let x (t1, t2) be a bounded input to a FIR filter whose
coefficients are h (t1, t2). Let |x (t2, t2)| < B ∀t1, t2. Then the output is

y (t1, t2) =

∞∑
τ1=−∞

∞∑
τ2=−∞

h (τ1, τ2)x (t1 − τ, t2 − τ)

=⇒ |y (t1, t2)| =

∣∣∣∣∣
∞∑

τ1=−∞

∞∑
τ2=−∞

h (τ1, τ2)x (t1 − τ, t2 − τ)
∣∣∣∣∣

≤
∞∑

τ1=−∞

∞∑
τ2=−∞

|h (τ1, τ2)x (t1 − τ, t2 − τ)| (Triangle inequality)

≤ B

∞∑
τ1=−∞

∞∑
τ2=−∞

|h (τ1, τ2)| (|x (t2, t2)| < B)

< ∞ (h (t1, t2) is FIR and has finite coefficients.)

h (t1, t2) = = (u (t1)− u (t1 −N)) (u (t2)− u (t2 −N)) =

{
1, 0 ≤ t1 ≤ N and 0 ≤ t2 ≤ N,
0, otherwise

is an example of FIR causal filter which is stable.
2D IIR filter, non-causal:
h (t1, t2) = at1bt2 for some non-zero real numbers a and b is a non-causal filter since h (−1,−1) 6= 0.
2D IIR filter, causal but unstable:
h (t1, t2) = at1bt2u (t1)u (t2) for real number a and b such that |a| > 1 and b 6= 0.
Consider the bounded input x (t1, t2) = 1 ∀t1, t2. The output at time (t1, t2) is

y (t1, t2) =

∞∑
τ1=−∞

∞∑
τ2=−∞

h (τ1, τ2)x (t1 − τ, t2 − τ) =
∞∑
τ1=0

∞∑
τ2=0

at1bt2 =

( ∞∑
τ1=0

aτ1

)( ∞∑
τ2=0

bτ2

)
=∞

Therefore, the filter is unstable. �
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Problem 2. Show that [
A A1

0 A2

] [
b
0

] [
cT qT

]
and [

A 0
A1 A2

] [
b
q

] [
cT 0T

]
and

(
A, b, cT

)
all have the same transfer function, for all values of A1, A2 and q that leads to valid matrix

operations. Conclude that realizations can have different numbers of states.

Solution. The transfer function of
(
A, b, cT

)
system is

H1 (z) = cT (zI−A)
−1
b+ d. (1)

The transfer function of
([

A A1

0 A2

]
,

[
b
0

]
,
[
cT qT

])
system is

H2 (z) =
[
cT qT

](
z

[
I 0
0 I

]
−
[
A A1

0 A2

])−1 [
b
0

]
+ d

=
[
cT qT

] [zI−A −A1

0 zI−A2

]−1 [
b
0

]
+ d (2)

Using block-matrix multiplication, we have[
zI−A −A1

0 zI−A2

] [
(zI−A)

−1
(zI−A)

−1
A1 (zI−A2)

−1

0 (zI−A2)
−1

]
=

[
I 0
0 I

]

=⇒
[
zI−A −A1

0 zI−A2

]−1
=

[
(zI−A)

−1
(zI−A)

−1
A1 (zI−A2)

−1

0 (zI−A2)
−1

]
.

Therefore, (1) can be written as

H2 (z) =
[
cT qT

] [(zI−A)
−1

(zI−A)
−1

A1 (zI−A2)
−1

0 (zI−A2)
−1

] [
b
0

]
+ d

=
[
cT qT

] [(zI−A)
−1
b

0

]
+ d

H2 (z) = cT (zI−A)
−1
b+ d. (3)

Similarly, the transfer function of
([

A 0
A1 A2

]
,

[
b
q

]
,
[
cT 0T

])
system is

H3 (z) =
[
cT 0T

](
z

[
I 0
0 I

]
−
[
A 0
A1 A2

])−1 [
b
0

]
+ d

=
[
cT 0T

] [zI−A 0
−A1 zI−A2

]−1 [
b
q

]
+ d (4)

We can also easily verify that[
zI−A −A1

0 zI−A2

]−1
=

[
(zI−A)

−1
0

(zI−A)
−1
A1 (zI−A2)

−1
(zI−A2)

−1

]
.

Therefore, (4) can be written as

H3 (z) =
[
cT 0T

] [ (zI−A)
−1

0

(zI−A)
−1

A1 (zI−A2)
−1

(zI−A2)
−1

] [
b
qT

]
+ d

=
[(
cT (zI−A)

−1
)

0T
] [b
q

]
+ d

H3 (z) = cT (zI−A)
−1
b+ d. (5)

Equations (1), (3) and (5) prove that the three systems have the same transfer function.
The number of states in a system is given by the dimension of the square matrix A. Notice that the

dimensions of the corresponding matrices for the other two systems is higher. Therefore, the same system can
be represented using different numbers of states.

Remarks:
2



1. For block upper triangular matrix,
[
A B
0 C

]
, the inverse is

[
A−1 −A−1BC−1

0 C−1

]
whenever A−1 and C−1

exist. This can be easily verified by multiplying the two matrices. Also note that
[
A B
0 C

]
is non-singular if

and only if A and C are non-singular. �
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Problem 3. (Modal Analysis) The following data is measured from a third-order system:

y = {0.3200, 0.2500, 0.1000, −0.0222, 0.0006, −0.0012, 0.0005, −0.0001} .
Assume that the first time index is 0, so that y [0] = 0.32.

(a) Determine the modes in the system, and plot them in the complex plane.
(b) The data can be written as

y [t] = c1 (p1)
t
+ c2 (p2)

t
+ c3 (p3)

t
t ≥ 0.

Determine the constants c1, c2 and c3.
(c) To explore the effect of noise on the system, add random Gaussian noise to each data point with variance

σ2 = 0.01, then find the modes of the noise data. Repeat several times (with different noise), and comment on
how the modal estimates move.

Solution. Given that the system is 3rd order system. Therefore, the AR equation for the system is

a1y [t− 1] + a2y [t− 2] + a3y [t− 3] = y [t] .

For the available 8 samples of data, we can write the above equation in matrix form as

Ya = y

where

Y =


y [2] y [1] y [0]
y [3] y [2] y [1]
y [4] y [3] y [2]
y [5] y [4] y [3]
y [6] y [5] y [4]

 , a =

a1a2
a3

 , y =


y [3]
y [4]
y [5]
y [6]
y [7]

 .
Since this is a over-determined set of equations, we consider the least squares solution given by

a =
(
YTY

)−1
YT y.

Using MATLAB, we obtain the coefficients: a1 = −0.1755, a2 = −0.0035, a3 = −0.0118
The modes of the system are the roots of the polynomial

a1z
−1 + a2z

−2 + a3z
−3 = 1.

The roots are obtained using MATLAB and the modes of the system are:

p1 = −0.2971,
p2 = 0.0608 + 0.1896j,

p3 = 0.0608− 0.1896j.

The data can be written as

y [t] = c1 (p1)
t
+ c2 (p2)

t
+ c3 (p3)

t
t ≥ 0.

For the 8 data samples available, the above equation can be written as

y = Pc

where

P =



1 1 1
p1 p2 p3

(p1)
2

(p2)
2

(p3)
2

(p1)
3

(p2)
3

(p3)
3

(p1)
4

(p2)
4

(p3)
4

(p1)
5

(p2)
5

(p3)
5

(p1)
6

(p2)
6

(p3)
6

(p1)
7

(p2)
7

(p3)
7


, c =

c1c2
c3

 , y =



y [0]
y [1]
y [2]
y [3]
y [4]
y [5]
y [6]
y [7]


.

The above set of equations is a overdetermined set of equations. Therefore we obtain the least squares solution
given by

c =
(
PTP

)−1
PT y.

The coefficients are

c1 = 0.5015,

c2 = −0.0907 + 1.0813j,

c3 = −0.0907 + 1.0813j.

The above procedure is repeated by adding noise to the data. Figure 1 shows the location of the system
modes in the complex plane. We observe that the noise introduces a large variation in the estimation of system
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Figure 1. Modes of 3rd order system plotted on a complex plane. The modes are estimated
when the data samples do not have noise as well as when the data samples contain noise. The
modes are estimated 20 times for the noisy case by adding different set of noise samples each
time.

modes. This is because the variance of the Gaussian noise is much larger than some of the data samples and
hence noise dominates the signal. In some cases, we even see the modes outside the unit circle i.e., the system
is modeled to be unstable while the noiseless data samples indicate that the system is stable.

MATLAB Code:

1 y = [ 0 . 3 2 0 0 ; 0 . 2 500 ; 0 . 1 000 ; −0.0222; 0 . 0 006 ; −0.0012; 0 . 0 005 ; −0 .0001 ] ;
2 Y_mtx_indices = [3 , 2 , 1 ; . . .
3 4 , 3 , 2 ; . . .
4 5 , 4 , 3 ; . . .
5 6 , 5 , 4 ; . . .
6 7 , 6 , 5 ] ;
7 y_vec_ ind i c e s = [ 4 ; 5 ; 6 ; 7 ; 8 ] ;
8

9 Y_mtx = y (Y_mtx_indices ) ;
10 y_vec = y ( y_vec_ ind i c e s ) ;
11

12 a = Y_mtx\y_vec
13 modes = r o o t s ( [1 ;− a ] )
14

15 p l o t (modes , ’ o ’ , ’ Marke rFaceCo lo r ’ , ’ k ’ ) ; ho ld on ;
16 x l im ([−2 , 2 ] ) ; y l im ([−2 , 2 ] ) ;
17

18 P = [ modes (1 ) . ^ [ 0 : 7 ] ’ , modes (2 ) . ^ [ 0 : 7 ] ’ , modes (3 ) . ^ [ 0 : 7 ] ’ ]
19 c = P\y
20

21 f o r i =1:20
22 y_noi sy = y + 0.1∗ randn (8 , 1) ;
23 Y_mtx = y_noi sy (Y_mtx_indices ) ;
24 y_vec = y_noi sy ( y_vec_ ind i c e s ) ;
25 a = Y_mtx\y_vec ;
26

27 p l o t ( r o o t s ( [1 ;− a ] ) , ’ . ’ , ’ Ma rk e rS i z e ’ , 5) ; ho ld on ;
28 end
29

30 p l o t ( c o s ( ( 0 : 1 0 00 ) ∗2∗ p i /100) , s i n ( ( 0 : 1 0 00 ) ∗2∗ p i /100) , ’ k− ’ )
31 l e g e n d ( ’ Without No i s e ’ , ’ With No i s e ’ )

�
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Problem 4. Random variables X and Y are uniformly distributed in the interval [0, 1]. Assuming that X and
Y are independent, find the probability density function and the probability distribution function of a random
variable Z = |X − Y |.
Solution. The p.d.fs of the random variables X and Y are

fX (x) =

{
1 x ∈ [0, 1]

0 otherwise,

fY (y) =

{
1 y ∈ [0, 1]

0 otherwise.

Since X and Y are independent, their joint p.d.f. is

f (x, y) = fX (x) fY (y) =

{
1 x ∈ [0, 1] and y ∈ [0, 1]

0 otherwise.

Since, X ∈ [0, 1] and Y ∈ [0, 1], Z = |X − Y | ∈ [0, 1].

X

Y
X − Y = −z

X − Y = z

|X − Y | ≤ z

(z, 0)

(1, z)

(z, 1)

(0, z)

Figure 2. X and Y are independent and uniformly distributed on [0, 1]. The gray region
corresponds to Z = |X − Y | < z.

From the figure, Pr [Z ≤ z] is the area of the gray region. The area of each white triangle is 1
2 (1− z)

2.
Therefore, the c.d.f of Z is

FZ (z) = Pr [Z ≤ z] =


0, z < 0

1− (1− z)2 = 2z − z2, z ∈ [0, 1]

1, z > 1

We obtain the p.d.f. of Z by differentiating the c.d.f.:

fZ (z) =

{
2− 2z, z ∈ [0, 1] ,

0, otherwise.

�
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Problem 5. The power spectral density of a certain sequence x [n] is 1
a+b cos(ω) for some non-zero real constants

a and b. Find the autocorrelation function. Suppose the autocorrelation function of a sequence x [n] behaves
as rxx (k) = 1

k for time lags k ≥ 1. What can you say about the power spectral density?

Solution. Power spectral density

S (ω) =
1

a+ b cos (ω)
.

The autocorrelation function can be obtained by taking inverse discrete-time Fourier transform of the power
spectral density.

Rxx (k) =
1

2π

π̂

−π

S (ω) ejωkdω

=
1

2π

π̂

−π

ejωk

a+ b cos (ω)
dω

=
1

2π

π̂

−π

cos (ωk)

a+ b cos (ω)
dω + j

1

2π

π̂

−π

sin (ωk)

a+ b cos (ω)
dω

Since sin(ωk)
a+b cos(ω) is an odd function, the integral in the range [−π, π] will be 0. Therefore,

Rxx (k) =
1

2π

π̂

−π

cos (ωk)

a+ b cos (ω)
dω.

Evaluating Rxx (0):

Rxx (0) =
1

2π

π̂

−π

1

a+ b cos (ω)
dω

Substitute t = tan
(
ω
2

)
=⇒ cos (ω) = 1−t2

1+t2 and dt = 1
2 sec

2
(
ω
2

)
dω = 1

2

(
1 + t2

)
dω. We get,

Rxx (0) =
1

2π

∞̂

−∞

2dt

a (1 + t2) + b (1− t2)

=
1

π

∞̂

−∞

dt

(a+ b) + t2 (a− b)

If a = b, Rxx (0) = 1
π

∞́

−∞

dt
(a+b) =∞.

For a 6= b,

Rxx (0) =
1

π

∞̂

−∞

dt

(a+ b) + t2 (a− b)

=
1

π (a− b)

∞̂

−∞

dt
(a+b)
(a−b) + t2

=
1

π (a− b)

[
tan−1

(√
a− b
a+ b

t

)]∞
−∞

(ˆ
dx

c2 + x2
= tan−1

(x
c

))
=

1

π (a− b)
[π
2
−
(
−π
2

)]
=

1

a− b (6)

Evaluating Rxx (k) , k > 0, (a 6= b)

Rxx (k) =
1

2π

π̂

−π

cos (ωk)

a+ b cos (ω)
dω
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=
1

2π

π̂

−π

cos (ω (k − 1)) cos (ω)− sin (ω (k − 1)) sin (ω)

a+ b cos (ω)
dω

Rxx (k) =
1

2π

π̂

−π

cos (ω (k − 1)) cos (ω)

a+ b cos (ω)
dω − 1

2π

π̂

−π

sin (ω (k − 1)) sin (ω)

a+ b cos (ω)
dω (7)

We evaluate the two integrals separately as follows:

1

2π

π̂

−π

cos (ω (k − 1)) cos (ω)

a+ b cos (ω)
dω =

1

2π

π̂

−π

1

b
cos (ω (k − 1))

(
1

a
− 1

a+ b cos (ω)

)
dω

=
1

2πab

π̂

−π

cos (ω (k − 1)) dω − 1

2πa

−πˆ

−π

cos (ω (k − 1))

a+ b cos (ω)
dω

=
1

2πab

π̂

−π

cos (ω (k − 1)) dω − 1

a
Rxx (k − 1)

1

2π

π̂

−π

cos (ω (k − 1)) cos (ω)

a+ b cos (ω)
dω =

{
1
ab − 1

aRxx (k − 1) , k = 1

− 1
aRxx (k − 1) k > 1

(8)

Let

f (k) =
1

2π

π̂

−π

sin (ω (k − 1)) sin (ω)

a+ b cos (ω)
dω

=⇒ f (1) =
1

2π

π̂

−π

sin (ω)

a+ b cos (ω)
dω = 0. (Integrating odd function on [−π, π])

f (2) =
1

2π

π̂

−π

sin2 (ω)

a+ b cos (ω)
dω

=
1

2π

π̂

−π

1− cos2 (ω)

a+ b cos (ω)
dω

=
1

2πb

π̂

−π

b− b cos2 (ω)− a cos (ω) + a cos (ω)

a+ b cos (ω)
dω

=
1

2πb

π̂

−π

b+ a cos (ω)− cos (ω) (a+ b cos (ω))

a+ b cos (ω)
dω

=
1

2πb

π̂

−π

b+ a cos (ω)

a+ b cos (ω)
dω − 1

2πb

π̂

−π

cos (ω) dω

=
1

2πb2

π̂

−π

b2 + ab cos (ω) + a2 − a2
a+ b cos (ω)

dω − 0

=
1

2πb2

π̂

−π

b2 − a2 + a (a+ b cos (ω))

a+ b cos (ω)
dω

=
b2 − a2
b2

1

2π

π̂

−π

1

a+ b cos (ω)
dω +

a

2πb2

π̂

−π

dω

=
b2 − a2
b2

1

a− b +
a

b2

f (2) = −1

b
− a

b
+
a

b2
8



For k > 2,

f (k) =
1

2π

π̂

−π

sin (ω (k − 1)) sin (ω)

a+ b cos (ω)
dω

=
1

2π

π̂

−π

sin (ω)

a+ b cos (ω)
(sin (ω (k − 2)) sin (ω) + cos (ω (k − 2)) cos (ω)) dω

=
1

2π

π̂

−π

sin (ω (k − 2)) sin2 (ω)

a+ b cos (ω)
dω +

1

2π

π̂

−π

cos (ω (k − 2)) cos (ω) sin (ω)

a+ b cos (ω)
dω

cos(ω(k−2)) cos(ω) sin(ω)
a+b cos(ω) is odd function ∀k. Therefore it’s integral in the range [−π, π] = 0. The term sin(ω(k−2)) sin2(ω)

a+b cos(ω)

is odd function for k > 2. Therefore,

f (k) =
1

2π

π̂

−π

sin (ω (k − 1)) sin (ω)

a+ b cos (ω)
dω =


0, k = 1

− 1
b − a

b +
a
b2 , k = 2

0, k > 2

(9)

From (6), (7), (8) and (9), we have

Rxx (k) =


1
a−b , k = 0
1
ab − 1

aRxx (k − 1) , k = 1

− 1
aRxx (k − 1) + 1

b +
a
b − a

b2 , k = 2

− 1
aRxx (k − 1) , k > 2

=⇒ Rxx (1) =
1

ab
− 1

a (a− b)

Rxx (2) = − 1

ab
+

1

a (a− b) +
1

b
+
a

b
− a

b2

Rxx (k) = Rxx (2)

(
−1

a

)k−2
k > 2.

Rxx (k) = Rxx (−k) , k < 0.

Part 2:

If rxx (k) = 1
k for k ≥ 1, the Fourier transform of rxx (k) does not exist since

∞∑
i=1

|rxx (k)| = ∞. The system

is unstable. �
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Problem 6. Suppose we are filtering a random sequence x [n] through a FIR filter 1− az−1, |a| < 1. Let x [n]
be a Bernoulli process such that P (x [n] = 1) = p and P (x [n] = 0) = 1 − p. Examine if this is a wide sense
stationary process and ergodic in mean.

Solution. x [n] is a Bernoulli process. Therefore, x [n1] and x [n2] are independent for n1 6= n2. The mean and
second moments of the process are

E [x [n]] = p× 1 + (1− p)× 0 = p ∀n,

E [x [n]x [n]] = p× 12 + (1− p)× 02 = p ∀n.
For k 6= 0,

E [x [n]x [n+ k]] = p× p× 1 + (1− p)× p× 0 + (1− p)× p× 0 + (1− p)× (1− p)× 0

= p2.

Therefore,

RXX (k) = E [x [n]x [n− k]] =
{
p, k = 0

p2, k 6= 0.

For the FIR filter 1− az−1, the output is given by

y [n] = x [n]− ax [n− 1] .

Therefore, the mean is

µY (n) = E [y [n]] = E [x [n]]− aE [x [n− 1]] = (1− a) p.
The autocorrelation is

E [y [n] y [n− k]] = E [x [n]x [n− k]]− aE [x [n]x [n− k − 1]]− aE [x [n− 1]x [n− k]] + a2E [x [n− 1]x [n− k − 1]]

=


p2 − ap− ap2 + a2p2, k = −1
p− ap2 − ap2 + a2p, k = 0

p2 − ap2 − ap+ a2p2, k = 1

p2 − ap2 − ap2 + a2p2, otherwise.

Since, µY (n) = µY ∀n and E [y [n] y [n− k]] = RY Y (k)∀n, the process is W.S.S.
The time average of y [n] is

ŷ = lim
N→∞

1

N

N∑
i=1

y [i]

= lim
N→∞

1

N

N∑
i=1

(x [i]− ax [i− 1])

= lim
N→∞

1

N
(x [N ]− ax [0]) + lim

N→∞

1

N

N−1∑
i=1

(x [i]− ax [i])

= 0 + (1− a) lim
N→∞

1

N

N−1∑
i=1

x [i]

= (1− a)
(

lim
N→∞

N − 1

N

)
lim
N→∞

1

N − 1

N−1∑
i=1

x [i]

= (1− a) lim
N→∞

1

N − 1

N−1∑
i=1

x [i]

ŷ = (1− a) x̂
where x̂ is the time average of the Bernoulli process x [n]. Since the Bernoulli process is ergodic, x̂ = µX = p.
Therefore, ŷ = (1− a) x̂ = (1− a) p. Hence, the process y [n] is ergodic in mean. �
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Problem 7. Consider a collection of all n × n matrices with real entries i.e., Mn (R). Is this a vector space?
Justify.

(1) Suppose we consider S := {X ∈Mn (R) : det (X) = 0}, examine if S is a subspace.
(2) Suppose P, X ∈Mn (R). Let T be an operator such that T (X) = PTXP for a fixed matrix P. Examine

if T is linear.

Solution. Yes, Mn (R) is a vector space:
1) Closed under addition: Adding two real matrices results in a matrix with real entries.
2) Identity element: Defining 0n as n× n matrix with all elements as 0, X+ 0n = X∀X ∈Mn (R)
3) Inverse element: X ∈Mn (R), we can define a matrix Y = −X by flipping the signs of the elements of Y.

In this case, X+Y = 0n.
4) Associative: Since the matrix addition is achieved by addition of individual elements, associativity of

Mn (R) follows from the associativity of real numbers over addition.
5) Closed under scalar multiplication: Multiplying a real matrix by a scalar will result in a real matrix.
6) Following three properties follow from the associative and distributive laws of real numbers when applied

to individual elements of the matrices X,Y ∈ Mn (R) (a) a (bX) = (ab)X (b) (a+ b)X = aX + bX (c)
a (X+Y) = aX+ aY ∀a, b ∈ R.

7) Multiplicative element 1 ∈ R satisfies 1.X = X∀X ∈Mn (R) .
Part 1:
S := {X ∈Mn (R) : det (X) = 0}
For n = 1, S = {[0]} is a trivial subspace.

For n > 1, S is not a subspace because S is not closed under addition. Example:
[
1 0
0 0

]
∈ S,

[
0 0
0 1

]
∈ S.

But
[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
/∈ S.

Part 2:
Using the left and right distributive laws of matrix multiplication,

T (X+Y) = PT (X+Y)P = PT (XP+YP) = PTXP+PTYP = T (X) + T (Y) .

Also, using commutative law matrix multiplication by scalar (aX = Xa), we have

T (aX) = PT (aX)P = aPTXP = aT (X) .

Therefore, the operator T (X) is linear. �

11
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Figure 3. Signals φ1 (t) and φ2 (t)

Problem 8. Consider the continuous time signal f (t) =
N−1∑
i=1

aiu
(
t− iT8

)
where ai is any real number, T is a

time unit and N is a positive integer. Let φ1 (t) = u (t)− t
(
t− T

4

)
and φ2 (t) = u (t)− 2u

(
t− T

8

)
+ u

(
t− T

4

)
.

(1) Are φ1 (t) and φ2 (t) linearly independent?
(2) Expand the signal f (t) in the φ1 (t) − φ2 (t) plane after normalizing φ1 (t) and φ2 (t). Interpret your

results graphically.
(3) Suppose a source emits φ1 (t) and φ2 (t) randomly with source probabilities p and 1 − p respectively.

Imagine a cloud of uncorrelated Gaussian noise N
(
0, σ2

)
acting in the φ1 (t) − φ2 (t) plane. Determine the

optimal linear decision boundaries to minimize the probability of misclassifying the signals φ1 (t) and φ2 (t).
Explicitly evaluate the probability of misclassification.

Solution. Given

φ1 (t) =

{
1, 0 ≤ t ≤ T

4

0, otherwise,

φ2 (t) =


1, 0 ≤ t ≤ T

8

−1, T
8 ≤ t ≤ T

4

0, otherwise.

Part 1:

〈φ1 (t) , φ2 (t)〉 =

∞̂

−∞

φ1 (t)φ2 (t) dt

=

T
8ˆ

0

dt−

T
4ˆ

T
8

dt

= 0.

The signals φ1 (t) and φ2 (t) are orthogonal. Therefore, the signals are linearly independent.
Part 2:
Since φ1 (t) and φ2 (t) are orthogonal, we obtain the orthonormal basis of the signal space by normalizing

the signals φ1 (t) and φ2 (t).

〈φ1 (t) , φ1 (t)〉 =

T
4ˆ

0

dt =
T

4

〈φ2 (t) , φ2 (t)〉 =

T
4ˆ

0

dt =
T

4
.

The orthonormal basis is given by

φ̂1 (t) =
φ1 (t)√

〈φ1 (t) , φ1 (t)〉
=

2√
T
φ1 (t) =

{
2√
T
, 0 ≤ t ≤ T

4

0, otherwise,
12



φ̂2 (t) =
φ2 (t)√

〈φ2 (t) , φ2 (t)〉
=

2√
T
φ2 (t) =


2√
T
, 0 ≤ t ≤ T

8

− 2√
T
, T

8 ≤ t ≤ T
4

0, otherwise.

We can write f (t) in terms of the shifted versions of the orthogonal basis. We shift the orthogonal bases by
integer multiples of T8 . We have

φ̂1

(
t− kT

8

)
=

{
2√
T
, k T8 ≤ t ≤ (k + 2) T8

0, otherwise,

φ̂2

(
t− kT

8

)
=


2√
T
, k T8 ≤ t ≤ (k + 1) T8

− 2√
T
, (k + 1) T8 ≤ t ≤ (k + 2) T4

0, otherwise.

We also have

f (t) =

N−1∑
i=1

aiu

(
t− iT

8

)
=


0, t < T

8∑n
i=1 ai, nT8 ≤ t < (n+ 1) T8 , n = 1, 2, · · · , N − 1∑N−1
i=1 ai k > (N − 1)

We now identify the projections f (t) on φ̂1
(
t− k T8

)
, φ̂2

(
t− k T8

)
〈
f (t) , φ̂1

(
t− kT

8

)〉
=

2√
T

(k+2)T8ˆ

k T8

f (t) dt

=
2√
T

(k+1)T8ˆ

k T8

f (t) dt+
2√
T

(k+2)T8ˆ

(k+1)T8

f (t) dt

=
2√
T

f (kT
8

) (k+1)T8ˆ

k T8

dt+ f

(
(k + 1)

T

8

) (k+2)T8ˆ

(k+1)T8

dt


=

2√
T

(
f

(
k
T

8

)
T

8
+ f

(
(k + 1)

T

8

)
T

8

)
=

√
T

4

(
f

(
k
T

8

)
+ f

(
(k + 1)

T

8

))

=


0, k < 0
√
T
4 a1, k = 0
√
T
4

(∑k
i=1 ai +

∑k+1
i=1 ai

)
, 1 ≤ k ≤ N − 2

√
T
4

(∑N−1
i=1 ai +

∑N−1
i=1 ai

)
k ≥ N − 1

〈
f (t) , φ̂1

(
t− kT

8

)〉
=


0, k < 0
√
T
4 a1, k = 0
√
T
4

(
ak+1 + 2

∑k
i=1 ai

)
, 1 ≤ k ≤ N − 2

√
T
2

∑N−1
i=1 ai k ≥ N − 1

Similarly,

〈
f (t) , φ̂2

(
t− kT

8

)〉
=

2√
T

(k+1)T8ˆ

k T8

f (t) dt− 2√
T

(k+2)T8ˆ

(k+1)T8

f (t) dt

=
2√
T

f (kT
8

) (k+1)T8ˆ

k T8

dt− f
(
(k + 1)

T

8

) (k+2)T8ˆ

(k+1)T8

dt


=

2√
T

(
f

(
k
T

8

)
T

8
− f

(
(k + 1)

T

8

)
T

8

)
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Figure 4. Trajectory of f (t) in φ̂1 (t)− φ̂2 (t) plane. The trajectory is obtained by projecting
f (t) on to φ̂1 (t− τ) and φ̂2 (t− τ) i.e., the shifted versions of the orthonormal basis.

=

√
T

4

(
f

(
k
T

8

)
− f

(
(k + 1)

T

8

))

=


0, k < 0

−
√
T
4 a1, k = 0

√
T
4

(∑k
i=1 ai −

∑k+1
i=1 ai

)
, 1 ≤ k ≤ N − 2

√
T
4

(∑N−1
i=1 ai −

∑N−1
i=1 ai

)
k ≥ N − 1

〈
f (t) , φ̂2

(
t− kT

8

)〉
=


0, k < 0

−
√
T
4 a1, k = 0

−
√
T
4 ak+1, 1 ≤ k ≤ N − 2

0 k ≥ N − 1

Therefore, in the φ1 (t)− φ2 (t), the signal follows the points (xk, yk) given by

(xk, yk) =



(0, 0) , k < 0(√
T
4 a1,−

√
T
4 a1

)
, k = 0(√

T
4

(
ak+1 + 2

∑k−1
i=1 ai

)
,−
√
T
4 ak+1

)
, 1 ≤ k ≤ N − 2(√

T
2

∑N−1
i=1 ai, 0

)
k ≥ N − 1

Since, we have integrated over step functions, the trajectory between the points is obtained using linear
interpolation.

Figure 4 shows an example trajectory considering ai = 1
2i and T = 16 units. The path follows the points

given by,

(xk, yk) =


(0, 0) , k < 0(
1
2 ,− 1

2

)
, k = 0((

1
2k+1 + 2

∑k
i=1

1
2i

)
,− 1

2k+1

)
, 1 ≤ k ≤ N − 2(

2
∑N−1
i=1

1
2i , 0

)
k ≥ N − 1

=


(0, 0) , k < 0(
1
2 ,− 1

2

)
, k = 0((

1
2k+1 + 2

(
1− 1

2k

))
,− 1

2k+1

)
, 1 ≤ k ≤ N − 2(

2
(
1− 1

2N−1

)
, 0
)

k ≥ N − 1

(xk, yk) =


(0, 0) , k < 0(
1
2 ,− 1

2

)
, k = 0(

2− 3
2k+1 ,− 1

2k+1

)
, 1 ≤ k ≤ N − 2(

2− 1
2N−2 , 0

)
k ≥ N − 1

Part 3:
The signals φ1 (t) and φ2 (t) correspond to the points s1 =

(√
T
2 , 0

)
and s2 =

(
0,
√
T
2

)
on the φ̂1 (t)− φ̂2 (t)

respectively. Let S = (Sx, Sy) indicate the signal transmitted by source. It is given that

Pr [S = s1] = p
14



Pr [S = s2] = 1− p
Let Z1 and Z2 be the noise values for the φ1 (t) and φ1 (t) coordinates. Given that Z1 ∼ N

(
0, σ2

)
and

Z2 ∼ N
(
0, σ2

)
. Z1 and Z2 are also independent.

Let the received noisy signal be represented by the vector

R = (X,Y ) = (Sx + Z1, Sy + Z2)

Therefore, the conditional p.d.f.s of X and Y given the transmitted signal are

fX (x | S) =
1√
2πσ2

e−(x−Sx)
2/2σ2

,

fY (y | S) =
1√
2πσ2

e−(y−Sy)
2/2σ2

.

Since Z1 and Z2 are independent, the joint p.d.f. is given by

fX,Y (x, y | S) =
1

2πσ2
e−

1
2σ2

((x−Sx)2+(y−Sy)2)

=⇒ fX,Y (x, y | S = s1) =
1

2πσ2
e
− 1

2σ2

((
x−
√
T
2

)2
+y2

)

=⇒ fX,Y (x, y | S = s2) =
1

2πσ2
e
− 1

2σ2

(
x2+

(
y−
√
T
2

)2
)

Using Bayes theorem, the conditional probability (a-posteriori probability) of si, i = 1, 2 being transmitted
given that we have received the vector R = (x, y) is

Ti (x, y) = Pr (S = si | x, y) =
f (x, y | S = si)Pr (S = si)

f (x, y)
, i = 1, 2. (10)

The optimal decision is to maximize the above a-posteriori probability i.e., we make a decision that s1 is
transmitted is T1 (x, y) ≥ T2 (x, y) for the received vector (x, y). Therefore, the optimal decision regions for s1
and s2 are R1 and R2 defined as

R1 = {(x, y) | T1 (x, y) ≥ T2 (x, y)} ,
R2 = {(x, y) | T1 (x, y) < T2 (x, y)} .

From (10),

T1 (x, y) ≥ T2 (x, y)

=⇒ f (x, y | S = s1)Pr (S = s1) ≥ f (x, y | S = s2)Pr (S = s2)

=⇒ 1

2πσ2
e
− 1

2σ2

((
x−
√
T
2

)2
+y2

)
× p ≥ 1

2πσ2
e
− 1

2σ2

(
x2+

(
y−
√
T
2

)2
)
× (1− p)

=⇒ − 1

2σ2

(x− √T
2

)2

+ y2

+ ln

(
p

1− p

)
≥ − 1

2σ2

x2 +(y − √T
2

)2


=⇒ 2σ2 ln

(
p

1− p

)
≥

(
x−
√
T

2

)2

− x2 + y2 −
(
y −
√
T

2

)2

=⇒ 2σ2 ln

(
p

1− p

)
≥ −

√
Tx+

√
Ty

=⇒ x− y ≥ −2σ2

√
T

ln

(
p

1− p

)
Therefore, the decision boundary is the line x− y = − 2σ2

√
T
ln
(

p
1−p

)
and the decision regions are

R1 =

{
(x, y) | x− y ≥ −2σ2

√
T

ln

(
p

1− p

)}
R2 =

{
(x, y) | x− y < −2σ2

√
T

ln

(
p

1− p

)}
.

The misclassification occurs when s1 is transmitted but the received vector (x, y) ∈ R2 or when S = s2 and
(x, y) ∈ R1.

Figure 5 shows the Gaussian cloud and the linear decision boundary for signal classification.
If Ŝ denotes the decision made, the probability of misclassification is

Pr
[
Ŝ 6= S

]
= Pr

[
Ŝ 6= s1 | S = s1

]
Pr [S = s1]
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Figure 5. The signals s1 = φ1 (t) and s2 = φ2 (t) are represented in the φ̂1 (t)− φ̂2 (t) plane.
The Gaussian cloud around the points s1 and s2 is due to the noise. The optimal linear decision
boundary is of the form X − Y = c.

+Pr
[
Ŝ 6= s2 | S = s2

]
Pr [S = s2]

= Pr [(x, y) ∈ R2 | S = s1]× p
+Pr [(x, y) ∈ R1 | S = s2]× (1− p)

= Pr

[
X − Y < −2σ2

√
T

ln

(
p

1− p

)
| S = s1

]
× p

+Pr

[
X − Y ≥ −2σ2

√
T

ln

(
p

1− p

)
| S = s1

]
× (1− p)

= Pr

[
Z1 +

√
T

2
− Z2 < −

2σ2

√
T

ln

(
p

1− p

)]
× p

+Pr

[
Z1 − Z2 −

√
T

2
≥ −2σ2

√
T

ln

(
p

1− p

)]
× (1− p)

Pr
[
Ŝ 6= S

]
= Pr

[
Z1 − Z2 < −

√
T

2
− 2σ2

√
T

ln

(
p

1− p

)]
× p

+Pr

[
Z1 − Z2 ≥

√
T

2
− 2σ2

√
T

ln

(
p

1− p

)]
× (1− p) (11)

Since Z1 and Z2 are Gaussian random variables, their linear combination Z1−Z2 is also a Gaussian random
variable with mean and variance given by

E [Z1 − Z2] = 0

Var (Z1 − Z2) = E
[
(Z1 − Z2 − 0)

2
]

= E
[
Z2
1

]
+ E

[
Z2
2

]
− 2E [Z1Z2]

= σ2 + σ2 − 2E [Z1]E [Z2]

Var (Z1 − Z2) = 2σ2.

Therefore, Z1 − Z2 ∼ N
(
0, 2σ2

)
and

Pr [Z1 − Z2 ≥ c] =

∞̂

c

1√
4πσ2

e−x
2/4σ2

dx

=

∞̂

c√
2σ

1√
2π
e−t

2/2dt

(
Using t =

x√
2σ

)

= Q

(
c√
2σ

)
where Q (·) is the probability in the tail of Gaussian function given by

Q (x) =

∞̂

x

1√
2π
e−t

2/2dt.
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We can also show that Z2 − Z1 ∼ N
(
0, 2σ2

)
and hence Pr [Z1 − Z2 < −c] = Pr [Z2 − Z1 > c] = Q

(
c√
2σ

)
.

Therefore, from (11), the probability of misclassification is

Pe = p×Q
(

1√
2σ

(√
T

2
+

2σ2

√
T

ln

(
p

1− p

)))

+(1− p)×Q
(

1√
2σ

(√
T

2
− 2σ2

√
T

ln

(
p

1− p

)))
�
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