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Problem 1. 7.2.3 from Moon & Stirling
Solution. As derived in the class, SVD of A is
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From the above equations, the four fundamental sub-spaces related to the matrix A are
a) Range space (column space) of A:

R(A) = {Az|zeC"}
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b) Range space (column space) of AX:
R (A") = Span(V;)
¢) Null space of A: From the theorem proved in the class,
N (A) = [R(A™)]" = Span (Va)
b) Null space of A#: From the theorem proved in the class,
N (A™) = [R(A)]" = Span (Us)



Problem 2. 7.2.4 from Moon & Stirling
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We need to find least square solution for Ax = b.

Since rank of A is 2, b lies in R (A). Therefore, the projection of b onto R (A) is b itself.
The SVD of A is

Solution. Given
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The least squares inverse is
AT =vVxiUu#
where L
T
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0 0

—0.0465  0.0925
0.0022 0.0765
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0.1084 —0.0491
The least square solution is

0.5442
2.4027
3.0929
3.7301
The I, norm of the solution is
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Since the equation Az = b has infinite solutions, a constraint is generally enforced to identify a suitable
unique solution. The choice of this constraint on the solution depends on the problem:
A least squares solution is desired if the samples in b are erroneous. |



Problem 3. 7.7.13 from Moon & Stirling

Solution. We have y € R (V) with Y41 = —1and z = ig where
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Let the dimension of V is (m+ 1) X p. pis the number of times the smallest singular value of A is repeated.

We can write y = Va where g is vector whose dimension is p.
Our goal is to find y i.e., to find @ such that
~o2
a) |z|* = HIQH is minimized
b) the constraint y,,+1 = —1 is satisfied i.e., gTy + 1 = 0 where

u'=[0 -~ 0 0 1]
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We solve this problem using Lagrange multiplier A by minimizing the cost function given by
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From (1), we have
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Using (3) in (2), we have
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Therefore, the desired solution is
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