INDIAN INSTITUTE OF SCIENCE

E9-252: MATHEMATICAL METHODS AND TECHNIQUES IN SIGNAL PROCESSING HOME WORK #5 - SOLUTIONS, FALL 2015

INSTRUCTOR: SHAYAN G. SRINIVASA TEACHING ASSISTANT: CHAITANYA KUMAR MATCHA

Problem 1. 7.2.3 from Moon & Stirling

Solution. As derived in the class, SVD of $\bf A$ is

$$\begin{aligned} \mathbf{A} &= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H &= \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_1 & \underline{0} \\ \underline{0}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^H \\ \mathbf{V}_2^H \end{bmatrix} \\ &= \mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^H \\ &\Longrightarrow \mathbf{A}^H &= \mathbf{V}_1 \mathbf{\Sigma}_1^T \mathbf{U}_1^H \end{aligned}$$

From the above equations, the four fundamental sub-spaces related to the matrix ${\bf A}$ are

a) Range space (column space) of A:

$$\mathcal{R}(\mathbf{A}) = \{\mathbf{A}\underline{x} \mid \underline{x} \in \mathbb{C}^n\}$$

$$= \{\mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^H \underline{x} \mid \underline{x} \in \mathbb{C}^n\}$$

$$= \{\mathbf{U}_1 \underline{\hat{x}} \mid \underline{\hat{x}} \in \mathbb{C}^r\}$$

$$= \operatorname{Span}(\mathbf{U}_1)$$

b) Range space (column space) of \mathbf{A}^H :

$$\mathcal{R}\left(\mathbf{A}^{H}\right) = \operatorname{Span}\left(\mathbf{V}_{1}\right)$$

c) Null space of A: From the theorem proved in the class,

$$\mathcal{N}\left(\mathbf{A}\right) = \left[\mathcal{R}\left(\mathbf{A}^H\right)\right]^{\perp} = \operatorname{Span}\left(\mathbf{V}_2\right)$$

b) Null space of \mathbf{A}^H : From the theorem proved in the class,

$$\mathcal{N}\left(\mathbf{A}^{H}\right)=\left[\mathcal{R}\left(\mathbf{A}\right)\right]^{\perp}=\operatorname{Span}\left(\mathbf{U}_{2}\right)$$

Problem 2. 7.2.4 from Moon & Stirling

Solution. Given

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 5 & 6 \\ 6 & 7 & 2 & 1 \end{bmatrix}, \quad \underline{b} = \begin{bmatrix} 48 \\ 30 \end{bmatrix}.$$

We need to find least square solution for $\mathbf{A}x = b$.

Since rank of **A** is 2, \underline{b} lies in $\mathcal{R}(\mathbf{A})$. Therefore, the projection of \underline{b} onto $\mathcal{R}(\mathbf{A})$ is \underline{b} itself. The SVD of \mathbf{A} is

$$\mathbf{A} = \underbrace{\begin{bmatrix} 0.6636 & 0.7480 \\ 0.7840 & -0.6636 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} 11.5913 & 0 & 0 & 0 \\ 0 & 5.8001 & 0 & 0 \\ \mathbf{\Sigma} \end{bmatrix}}_{\mathbf{\Sigma}} \underbrace{\begin{bmatrix} 0.4445 & 0.6808 & 0.4153 & 0.4081 \\ -0.5575 & -0.2851 & 0.4160 & 0.6954 \\ 0.4661 & -0.3267 & -0.5573 & 0.6045 \\ 0.5237 & -0.5904 & 0.5864 & -0.1823 \end{bmatrix}}_{\mathbf{V}^H}$$

The least squares inverse is

$$\mathbf{A}^\dagger = \mathbf{V} \mathbf{\Sigma}^\dagger \mathbf{U}^H$$

where

$$\boldsymbol{\Sigma}^{\dagger} = \begin{bmatrix} \frac{1}{11.5913} & 0\\ 0 & \frac{1}{5.8001}\\ 0 & 0 \end{bmatrix}.$$

$$\mathbf{A}^{\dagger} = \begin{bmatrix} -0.0465 & 0.0925\\ 0.0022 & 0.0765\\ 0.0774 & -0.0208\\ 0.1084 & -0.0491 \end{bmatrix}.$$

$$\mathbf{A}^{\dagger} = \begin{bmatrix} -0.0465 & 0.0925 \\ 0.0022 & 0.0765 \\ 0.0774 & -0.0208 \\ 0.1084 & -0.0491 \end{bmatrix}$$

The least square solution is

$$\underline{\hat{x}} = \mathbf{A}^{\dagger} \underline{b} = \begin{bmatrix} 0.5442 \\ 2.4027 \\ 3.0929 \\ 3.7301 \end{bmatrix}$$

The l_2 norm of the solution is

$$\|\hat{\underline{x}}\| = 5.4359 < 5.4772 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Since the equation $\mathbf{A}\underline{x} = \underline{b}$ has infinite solutions, a constraint is generally enforced to identify a suitable unique solution. The choice of this constraint on the solution depends on the problem:

A least squares solution is desired if the samples in \underline{b} are erroneous.

Problem 3. 7.7.13 from Moon & Stirling

Solution. We have $\underline{y} \in \mathcal{R}\left(\tilde{\mathbf{V}}\right)$ with $y_{m+1} = -1$ and $\underline{x} = \tilde{\mathbf{I}}\underline{y}$ where

$$\tilde{\mathbf{I}} = \begin{bmatrix} \mathbf{I}_m & \underline{0} \\ \underline{0}^T & 0 \end{bmatrix}.$$

Let the dimension of $\tilde{\mathbf{V}}$ is $(m+1) \times p$. p is the number of times the smallest singular value of \mathbf{A} is repeated. We can write $\underline{y} = \tilde{\mathbf{V}}\underline{a}$ where \underline{a} is vector whose dimension is p. Our goal is to find \underline{y} i.e., to find \underline{a} such that

a) $\|\underline{x}\|^2 = \|\tilde{\mathbf{I}}\underline{y}\|^2$ is minimized

b) the constraint $y_{m+1} = -1$ is satisfied i.e., $\underline{u}^T \underline{y} + 1 = 0$ where

$$\underline{u}^T = \begin{bmatrix} 0 & \cdots & 0 & 0 & 1 \end{bmatrix}_{1 \times (m+1)}$$

We solve this problem using Lagrange multiplier λ by minimizing the cost function given by

$$C(\underline{a}, \lambda) = \|\tilde{\mathbf{I}}\underline{y}\|^{2} + 2\lambda (\underline{u}^{T}\underline{y} + 1)$$

$$= \|\tilde{\mathbf{I}}\tilde{\mathbf{V}}\underline{a}\|^{2} + 2\lambda (\underline{u}^{T}\tilde{\mathbf{V}}\underline{a} + 1)$$

$$= (\tilde{\mathbf{I}}\tilde{\mathbf{V}}\underline{a})^{H}\tilde{\mathbf{I}}\tilde{\mathbf{V}}\underline{a} + 2\lambda (\underline{u}^{T}\tilde{\mathbf{V}}\underline{a} + 1)$$

$$= \underline{a}^{H}\tilde{\mathbf{V}}^{H}\tilde{\mathbf{I}}^{H}\tilde{\mathbf{I}}\tilde{\mathbf{V}}\underline{a} + 2\lambda (\underline{u}^{T}\tilde{\mathbf{V}}\underline{a} + 1)$$

$$= \underline{a}^{H}\tilde{\mathbf{V}}^{H}\tilde{\mathbf{I}}^{H}\tilde{\mathbf{I}}\tilde{\mathbf{V}}\underline{a} + 2\lambda (\underline{u}^{T}\tilde{\mathbf{V}}\underline{a} + 1) (\tilde{\mathbf{I}}^{H}\tilde{\mathbf{I}} = \tilde{\mathbf{I}})$$

$$\frac{\partial C}{\partial a^H} = 2\tilde{\mathbf{V}}^H \tilde{\mathbf{I}} \tilde{\mathbf{V}} \underline{a} + 2\lambda \tilde{\mathbf{V}}^H \underline{u} = \underline{0}.$$
 (1)

$$\frac{\partial C}{\partial \lambda} = \underline{u}^T \tilde{\mathbf{V}} \underline{a} + 1 = 0. \tag{2}$$

From (1), we have

$$\tilde{\mathbf{V}}^{H}\tilde{\mathbf{I}}\tilde{\mathbf{V}}\underline{a} = -\lambda\tilde{\mathbf{V}}^{H}\underline{u}$$

$$\Longrightarrow \underline{a} = -\lambda\left(\tilde{\mathbf{V}}^{H}\tilde{\mathbf{I}}\tilde{\mathbf{V}}\right)^{-1}\tilde{\mathbf{V}}^{H}\underline{u}.$$
(3)

Using (3) in (2), we have

$$\begin{array}{rcl} \lambda \underline{u}^T \left(\tilde{\mathbf{V}} \left(\tilde{\mathbf{V}}^H \tilde{\mathbf{I}} \tilde{\mathbf{V}} \right)^{-1} \tilde{\mathbf{V}}^H \right) \underline{u} & = & 1 \\ \\ \Longrightarrow \lambda & = & \frac{1}{\underline{u}^T \left(\tilde{\mathbf{V}} \left(\tilde{\mathbf{V}}^H \tilde{\mathbf{I}} \tilde{\mathbf{V}} \right)^{-1} \tilde{\mathbf{V}}^H \right) \underline{u}} \\ \\ \Longrightarrow \underline{a} & = & -\frac{\left(\tilde{\mathbf{V}}^H \tilde{\mathbf{I}} \tilde{\mathbf{V}} \right)^{-1} \tilde{\mathbf{V}}^H \underline{u}}{\underline{u}^T \left(\tilde{\mathbf{V}} \left(\tilde{\mathbf{V}}^H \tilde{\mathbf{I}} \tilde{\mathbf{V}} \right)^{-1} \tilde{\mathbf{V}}^H \right) \underline{u}} \end{array}$$

Therefore, the desired solution is

$$\underline{y} = \tilde{\mathbf{V}}\underline{a} = -\frac{\tilde{\mathbf{V}}\left(\tilde{\mathbf{V}}^H\tilde{\mathbf{I}}\tilde{\mathbf{V}}\right)^{-1}\tilde{\mathbf{V}}^H\underline{u}}{\underline{u}^T\left(\tilde{\mathbf{V}}\left(\tilde{\mathbf{V}}^H\tilde{\mathbf{I}}\tilde{\mathbf{V}}\right)^{-1}\tilde{\mathbf{V}}^H\right)\underline{u}}.$$

3