Indian Institute of Science

E9: 252: Mathematical Methods and Techniques in Signal Processing
Instructor: Shayan Srinivasa Garani
Mid Term Exam\#1, Fall 2017

Name and SR.No:

Instructions:

- You are allowed only 5 pages of A4 pages written on both sides and a calculator for this exam. No wireless allowed.
- The time duration is 3 hrs .
- There are five main questions. None of them have negative marking.
- Attempt all of them with careful reasoning and justification for partial credit.
- Make any reasonable assumptions if really required.
- Do not panic, do not cheat.
- Good luck!

Question No.	Points scored
1	
2	
3	
4	
5	
Total points	

Problem 1: This problem has 2 parts.
(1) Is the set $1, t, t^{2}, \ldots, t^{m}$ linearly dependent? Justify.
(10) pts.
(2) Let $X=L_{2}[-\pi, \pi]$. Let $S_{1}=\operatorname{span}(1, \cos (t), \cos (2 t), \ldots)$ and $S_{2}=\operatorname{span}(\sin (t), \sin (2 t), \ldots)$. Examine if $\operatorname{dim}\left(S_{1} \oplus S_{2}\right)=\operatorname{dim}\left(S_{1}\right)+\operatorname{dim}\left(S_{2}\right)$.
(10 pts.)

Problem 2: This problem has 2 parts.

(1) Let $e[n]$ denote a white noise sequence, and let $s[n]$ be a sequence uncorrelated with $e[n]$. Examine if $y[n]=s[n] e[n]$ is white.
(10 pts .)
(2) Let $x[n]$ be a real stationary white noise sequence with zero mean and variance σ_{x}^{2}. Determine the output variance if $x[n]$ is filtered through a cascade of two filters with responses $h_{1}[n]$ and $h_{2}[n]$. You can assume that the filters have infinite taps.

Problem 3: Derive a general form of state space representation for N cascaded LTI systems. Assume that each system in the cascade has a state space representation $\mathbf{A}_{i}, \mathbf{b}_{i}, \mathbf{c}_{i}^{T}, d_{i}=0$ for $0 \leq i \leq N-1$. (10 pts.)

Problem 4: The system shown in Figure approximately interpolates a discrete time sequence $x[n]$ by a factor L. Suppose that the linear filter has impulse response $h[n]=h[-n]$ and $h[n]=0$ for $|n|>(R L-1)$, where R and L are integers; i.e., the impulse response is symmetric and of length $2 R L-1$ samples.

(1) How much delay must be inserted to make the system causal?
(2) What conditions must be satisfied by $h[n]$ such that $y[n]=x\left[\frac{n}{L}\right]$ for $n=0, \pm L, \pm 2 L, \ldots$? (5 pts.)
(3) By exploiting the symmetry of the impulse response of the filter, show that each sample of $y[n]$ can be computed with no more than $R L$ multiplications.
(4) By taking advantage of the fact that multiplications by zero need not be done, show that only $2 R$ multiplications per output sample are required.

Problem 5: Suppose you obtained a sequence $s[n]$ by filtering a speech signal $s_{c}(t)$ with a continuous time low pass filter with a cutoff of 5 KHz and then sampling it at 10 KHz rate shown in Figure (a). Unfortunately, the speech signal $s_{c}(t)$ is destroyed once $s[n]$ was stored on a disk drive. Later you decided that you should have followed the process in Figure (b). Develop a method to obtain $s_{1}[n]$ from $s[n]$ using appropriate processing. Suppose it was required to filter $s_{1}[n]$ through a discrete time filter $H(z)$ for any post processing. Show how you will realize this efficiently using signals $s[n]$ and $H(z)$.
(30 pts.)

(b)

