Generalized state space model Linear discrete time models

Consider the linear discrete time model with transfer function for $(p=q)$ case.

$$
H(z)=\frac{\sum_{k=0}^{p} b_{k} z^{-k}}{1+\sum_{k=1}^{p} a_{k} z^{-k}}=\frac{Y(z)}{X(z)}
$$

Let us define two related transfer functions as follows

$$
\begin{gathered}
\frac{Y(z)}{W(z)}=\sum_{k=0}^{p} b_{k} z^{-k} \\
\frac{W(z)}{X(z)}=\frac{1}{1+\sum_{k=1}^{p} a_{k} z^{-k}}
\end{gathered}
$$

Let us form the signal flow graph for representing transfer functions above.

Define the state variables as follows:

$$
\begin{aligned}
w_{p}(n) & =w(n-1) \\
w_{p-1}(n) & =w(n-2) \\
\vdots & \\
w_{1}(n) & =w(n-p)
\end{aligned}
$$

As the signal $w(n)$ passes through the delay line, the state variables $\left[w_{1}(n), \ldots, w_{p}(n)\right]$ form a vector. The time to space mapping dictates that the signal in time can be transformed to a vector in space. The signal dynamics can be visualized as a trajectory as below.

$$
\begin{aligned}
w_{1}(n+1) & =w_{2}(n) \\
& \vdots \\
w_{p-1}(n+1) & =w_{p}(n) \\
w_{p}(n+1) & =x(n)-a_{1} w_{p}(n)-a_{2} w_{p-1}(n)-\cdots-a_{p} w_{1}(n)
\end{aligned}
$$

Let us form a state vector $\underline{W}(n)=\left[w_{1}(n), \ldots, w_{p}(n)\right]^{\mathrm{T}}$. Using this and the above expressions, we have

$$
\underline{W}(n+1)=\mathbf{A} \underline{W}(n)+\mathbf{b} x(n)
$$

where

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & & & & & & \\
-a_{p} & -a_{p-1} & -a_{p-2} & -a_{p-3} & \cdots & -a_{2} & -a_{1}
\end{array}\right], \\
\mathbf{b}=[\underbrace{0,0, \ldots, 0,1}_{p \text { elements }}]^{\mathrm{T}}
\end{gathered}
$$

Similarly, one can do the math for expressing the output $y(n)$ through a sequence of equations below:

$$
\begin{aligned}
& y(n)=b_{0} w(n)+\sum_{k=1}^{p} b_{k} w_{p+1-k}(n) \\
& y(n)=b_{0} w_{p}(n+1)+\sum_{k=1}^{p} b_{k} w_{p+1-k}(n) \\
& y(n)=b_{0}\left[x(n)-a_{1} w_{p}(n)-a_{2} w_{p-1}(n)-\cdots-a_{p} w_{1}(n)\right]+b_{1} w_{p}(n)+b_{2} w_{p-1}(n)+\cdots+b_{p} w_{1}(n) \\
& y(n)=\sum_{k=1}^{p}\left[b_{k}-b_{0} a_{k}\right] w_{p+1-k}(n)+b_{0} x(n) \\
& y(n)=\mathbf{c}^{\mathrm{T}} \underline{W}(n)+\mathbf{d} x(n)
\end{aligned}
$$

where

$$
\begin{gathered}
\mathbf{c}=\left[\begin{array}{c}
b_{p}-b_{0} a_{p} \\
\vdots \\
b_{1}-b_{0} a_{1}
\end{array}\right], \\
\mathbf{d}=b_{0} .
\end{gathered}
$$

