Indian Institute of Science
E9-252: Mathematical Methods and Techniques in Signal Processing
Instructor: Shayan G. Srinivasa
Homework \#2 Solutions, Fall 2017
Solutions prepared by Priya J Nadkarni
Late submission policy: Points scored $=$ Correct points scored $\times e^{-d}, d=\#$ days late
Assigned date: Sept. $4^{\text {th }} 2017$
Due date: Sept. $11^{\text {th }} 2017$ by end of the day

PROBLEM 1:

If $x(t)=\sum_{k=1}^{M} A_{k} e^{j 2 \pi f_{k} t}, E\left[A_{k}\right]=0$ and A_{k} 's are uncorrelated, examine if $x(t)$ is WSS.
Solution: For a process to be WSS, we need to check two conditions:

1) $E[x(t)]$ should be a constant with respect to time t. Let us check it for our signal.

$$
E[x(t)]=\sum_{k=1}^{M} \mathrm{E}\left[A_{k} e^{j 2 \pi f_{k} t}\right]=\sum_{k=1}^{M} \mathrm{E}\left[A_{k}\right] \mathrm{E}\left[e^{j 2 \pi f_{k} t}\right]=0
$$

2) $R_{x x}\left(t_{1}, t_{2}\right)$ depends on only the time difference $t_{1}-t_{2}$.

$$
\begin{aligned}
R_{x x}\left(t_{1}, t_{2}\right) & =\mathrm{E}\left[x\left(t_{1}\right) x^{*}\left(t_{2}\right)\right]=\mathrm{E}\left[\sum_{k=1}^{M} A_{k} e^{j 2 \pi f_{k} t_{1}} \sum_{l=1}^{M} A_{l}^{*} e^{-j 2 \pi f_{l} t_{2}}\right] \\
& =\sum_{k=1}^{M} \sum_{l=1}^{M} \mathrm{E}\left[A_{k} A_{l}^{*}\right] \mathrm{E}\left[e^{j 2 \pi\left(f_{k} t_{1}-f_{l} t_{2}\right)}\right]
\end{aligned}
$$

As A_{k} 's are uncorrelated, if $k \neq l, \mathrm{E}\left[A_{k} A_{l}^{*}\right]=\mathrm{E}\left[A_{k}\right] \mathrm{E}\left[A_{l}^{*}\right]=\mathrm{E}\left[A_{k}\right] \mathrm{E}\left[A_{l}\right]^{*}=0$. Thus,

$$
R_{x x}\left(t_{1}, t_{2}\right)=\sum_{k=1}^{M} \mathrm{E}\left[\left|A_{k}\right|^{2}\right] \mathrm{E}\left[e^{j 2 \pi\left(f_{k} t_{1}-f_{k} t_{2}\right)}\right]=\sum_{k=1}^{M} \mathrm{E}\left[\left|A_{k}\right|^{2}\right] \mathrm{E}\left[e^{j 2 \pi f_{k}\left(t_{1}-t_{2}\right)}\right]
$$

Thus, this process is WSS.

PROBLEM 2:

Prove the following:
a) $\left|R_{X X}(\tau)\right| \leq R_{X X}(0)$
b) $\left|R_{X Y}(\tau)\right| \leq \sqrt{R_{X X}(0) R_{Y Y}(0)}$
c) $R_{X X}(\tau)=R_{X X}^{*}(-\tau)$
d) $\sum_{k=1}^{N} \sum_{l=1}^{N} a_{k} a_{l}^{*} R_{X X}\left(t_{k}-t_{l}\right) \geq 0 \quad \forall N>0, \forall t_{1}<t_{2}<\cdots<t_{N}$ and complex a_{i} 's

Solution: Let us solve part b) first.
b)

$$
\begin{aligned}
\mathrm{E}\left[|x(t)-\alpha y(t-\tau)|^{2}\right] & \geq 0 \\
\left.\mathrm{E}\left[|x(t)|^{2}\right]+|\alpha|^{2}|y(t-\tau)|^{2}-\alpha^{*} x(t) y^{*}(t-\tau)-\alpha x^{*}(t) y(t-\tau)\right] & \geq 0 \\
R_{x x}(0)+|\alpha|^{2} R_{y y}(0)-\alpha^{*} R_{x y}(\tau)-\alpha R_{x y}^{*}(\tau) & \geq 0 \\
\text { differentiating w.r.t } \alpha^{*}, \quad \alpha R_{y y}(0)-R_{x y}(\tau)=0 & \Rightarrow \alpha=\frac{R_{x y}(\tau)}{R_{y y}(0)}
\end{aligned}
$$

Thus, $R_{x x}(0)+\left|\frac{R_{x y}(\tau)}{R_{y y}(0)}\right|^{2} R_{y y}(0)-\frac{R_{x y}(\tau)}{R_{y y}(0)} R_{x y}^{*}(\tau)-\frac{R_{x y}^{*}(\tau)}{R_{y y}^{*}(0)} R_{x y}(\tau) \geq 0$

$$
\begin{aligned}
R_{x x}(0) R_{y y}(0) & \geq\left|R_{x y}(\tau)\right|^{2} \\
\left|R_{x y}(\tau)\right| & \leq \sqrt{R_{x x}(0) R_{y y}(0)}
\end{aligned}
$$

a) This result is obtained by substituting $y=x$ in part b)
c)

$$
\begin{aligned}
R_{x x}^{*}(-\tau) & =\mathrm{E}\left[x(t) x^{*}(t-\tau)\right]^{*}=\mathrm{E}\left[x^{*}(t) x(t-\tau)\right] \\
& =\mathrm{E}\left[x(t) x^{*}(t-\tau)\right]=R_{x x}(\tau)
\end{aligned}
$$

d) Let $x(t)$ denote a WSS process. Consider $y(t)=\sum_{k=1}^{N} a_{k} x\left(t_{k}-t\right)$.

$$
\begin{aligned}
\mathrm{E}\left[|y(t)|^{2}\right] \geq 0 \Rightarrow \mathrm{E}\left[\sum_{k=1}^{N} a_{k} x\left(t_{k}-t\right) \sum_{l=1}^{N} a_{l}^{*} x^{*}\left(t_{l}-t\right)\right] & \geq 0 \\
\sum_{k=1}^{N} \sum_{l=1}^{N} a_{k} a_{l}^{*} \mathrm{E}\left[x\left(t_{k}-t\right) x^{*}\left(t_{l}-t\right)\right] & \geq 0 \\
\sum_{k=1}^{N} \sum_{l=1}^{N} a_{k} a_{l}^{*} R_{x x}\left(t_{k}-t_{l}\right) & \geq 0
\end{aligned}
$$

PROBLEM 3:

a) Only one of the switches S_{1}, S_{2} and S_{3} is active at a time. S_{1} closes twice as fast as S_{2}. S_{2} closes twice as fast as S_{3}. The signals are distributed normally as follows:

$$
A \sim \mathcal{N}(-1,4), B \sim \mathcal{N}(0,1) \text { and } C \sim \mathcal{N}(1,4)
$$

Figure 1: Switch
i) What is $P(X \leq 1)$?
ii) Given $X>-1$, which signal is most likely transmitted?
b) There are two roads from A to B and two roads from B to C. Each of the four roads have probability p of being blocked by snow independently of all the others. What is the probability of an open road from A to C ?

Solution:

a) $P(X \leq 1)=\sum_{i=1}^{3} P\left(X \leq 1 \mid S_{i}\right.$ is active $) P\left(S_{i}\right.$ is active $)$.

$$
P\left(X \leq 1 \mid S_{i} \text { is active }\right)= \begin{cases}P(A \leq 1) & i=1 \tag{1}\\ P(B \leq 1) & i=2 \\ P(C \leq 1) & i=3\end{cases}
$$

Computing the CDF for a variable M having normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
P(M \leq b)=\int_{-\infty}^{b} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(m-\mu)^{2}}{2 \sigma^{2}}} d m
$$

Considering $y=\frac{m-\mu}{\sigma}$, we obtain $d y=\frac{d m}{\sigma}$ and limits change to $-\infty$ and $b^{\prime}=\frac{b-\mu}{\sigma}$

$$
P(M \leq b)=\int_{-\infty}^{b^{\prime}} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y=P\left(Y \leq b^{\prime}=\frac{b-\mu}{\sigma}\right) \text { where } Y=\frac{M-\mu}{\sigma}
$$

Thus, let Y be a random variable having standard normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\begin{aligned}
& P(A \leq 1)=P(Y \leq(1-(-1)) / 2)=P(X \leq 1)=0.8413 \\
& P(B \leq 1)=P(Y \leq(1-0) / 1)=P(X \leq 1)=0.8413 \\
& P(C \leq 1)=P(Y \leq(1-(1)) / 2)=P(X \leq 0)=0.5
\end{aligned}
$$

Similarly, for (ii),

$$
\begin{aligned}
& P(A \leq-1)=P(Y \leq(-1-(-1)) / 2)=P(X \leq 0)=0.5 \Rightarrow P(A>-1)=0.5 \\
& P(B \leq-1)=P(Y \leq(-1-0) / 1)=P(X \leq-1)=0.1587 \Rightarrow P(B>-1)=0.8413 \\
& P(C \leq-1)=P(Y \leq(-1-(1)) / 2)=P(X \leq-1)=0.1587 \Rightarrow P(C>-1)=0.8413
\end{aligned}
$$

The CDF for standard normal distribution is obtained from the table.
Now, $P\left(S_{1}\right.$ is active $): P\left(S_{2}\right.$ is active $): P\left(S_{3}\right.$ is active $)=4: 2: 1$
$\Rightarrow P\left(S_{1}\right.$ is active $)=4 / 7, P\left(S_{2}\right.$ is active $)=2 / 7$ and $P\left(S_{3}\right.$ is active $)=1 / 7$.

$$
\begin{aligned}
P(X \leq 1) & =(4 / 7) \times 0.8413+(2 / 7) \times 0.8413+(1 / 7) \times 0.5=0.7925 \\
P(X \leq-1) & =(4 / 7) \times 0.5+(2 / 7) \times 0.1587+(1 / 7) \times 0.1587=0.3537 \Rightarrow P(X>-1)=0.6463
\end{aligned}
$$

When $X>-1$, the signal which was most likely to be transmitted is computed based on aposteriori probability,

$$
\begin{aligned}
& P(X=A \mid X>-1)=\frac{P(X>-1 \mid X=A) P(X=A)}{P(X>-1)}=\frac{0.5 \times \frac{4}{7}}{0.6463}=0.4421 \\
& P(X=B \mid X>-1)=\frac{P(X>-1 \mid X=B) P(X=B)}{P(X>-1)}=\frac{0.8413 \times \frac{2}{7}}{0.6463}=0.3719 \\
& P(X=C \mid X>-1)=\frac{P(X>-1 \mid X=C) P(X=C)}{P(X>-1)}=\frac{0.8413 \times \frac{1}{7}}{0.6463}=0.1859
\end{aligned}
$$

Thus, the most likely transmitted signal is A.
b) Let r_{1} and r_{2} be roads from A to B and r_{3} and r_{4} be roads from B to C . The probability that a road is not blocked is $1-p$. Thus,

```
\(\mathrm{P}(\) Road open from A to C\()=\mathrm{P}(\) Road open from A to B\() \mathrm{P}(\) Road open from B to C\()\)
\(P(\operatorname{Road}\) open from \(A\) to \(B)=P(\operatorname{Road}\) open from \(A\) to \(B)\) due to symmetry
\(\mathrm{P}(\) Road open from A to B\()=\mathrm{P}\left(r_{1}\right.\) or \(r_{1}\) is open \()\)
    \(=p(1-p)+(1-p) p+(1-p)^{2}=1-p^{2}\)
\(\mathrm{P}(\operatorname{Road}\) open from A to C\()=\left(1-p^{2}\right)^{2}\)
```

PROBLEM 4: Prove the Cauchy Schwarz inequality for random variables: For two random variables X and Y,

$$
|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
$$

Solution: Let X and Y be two random variables. Let us convert them to random variables A and B which have zero mean and variance equal to 1 .

$$
A=\frac{X-\mathrm{E}[X]}{\sigma_{X}}, \quad B=\frac{Y-\mathrm{E}[Y]}{\sigma_{Y}}
$$

Now, as $\mathrm{E}\left[(A+B)^{2}\right] \geq 0$ and $\mathrm{E}\left[(A-B)^{2}\right] \geq 0$, we have,

$$
\begin{aligned}
\mathrm{E}\left[A^{2}+B^{2}+2 A B\right] & \geq 0 \Rightarrow \mathrm{E}\left[A^{2}\right]+\mathrm{E}\left[B^{2}\right]+2 \mathrm{E}[A B] \geq 0 \\
\mathrm{E}[A B] & \geq\left(-\sigma_{A}-\sigma_{B}\right) / 2=-1 \\
\mathrm{E}\left[A^{2}+B^{2}-2 A B\right] & \geq 0 \Rightarrow \mathrm{E}\left[A^{2}\right]+\mathrm{E}\left[B^{2}\right]-2 \mathrm{E}[A B] \geq 0 \\
\mathrm{E}[A B] & \leq\left(\sigma_{A}+\sigma_{B}\right) / 2=1 \\
\Rightarrow|\mathrm{E}[A B]| \leq 1 &
\end{aligned}
$$

Equality occurs when $\mathrm{E}\left[(A+B)^{2}\right]=0$ or $\mathrm{E}\left[(A-B)^{2}\right]=0$, i.e. when $A=-B$ or $A=B$. Considering X and Y,

$$
\begin{aligned}
|\operatorname{Cov}(X, Y)| & =|E[(X-E[X])(Y-E[Y])]|=\left|E\left[\sigma_{X} A \sigma_{Y} B\right]\right| \\
& =\left|\sigma_{X} \sigma_{Y} E[A B]\right|=\left|\sigma_{X} \sigma_{Y}\right||E[A B]| \\
& \leq \sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}} \\
& =\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
\end{aligned}
$$

