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PROBLEM 1:

If x(t) =
M∑
k=1

Ake
j2πfkt, E[Ak] = 0 and Ak’s are uncorrelated, examine if x(t) is WSS.

Solution: For a process to be WSS, we need to check two conditions:

1) E[x(t)] should be a constant with respect to time t. Let us check it for our signal.

E[x(t)] =

M∑
k=1

E[Ake
j2πfkt] =

M∑
k=1

E[Ak]E[ej2πfkt] = 0

2) Rxx(t1, t2) depends on only the time difference t1 − t2.

Rxx(t1, t2) = E[x(t1)x
∗(t2)] = E

[
M∑
k=1

Ake
j2πfkt1

M∑
l=1

A∗l e
−j2πflt2

]

=
M∑
k=1

M∑
l=1

E[AkA
∗
l ]E[ej2π(fkt1−flt2)]

As Ak’s are uncorrelated, if k 6= l, E[AkA
∗
l ] = E[Ak]E[A∗l ] = E[Ak]E[Al]

∗ = 0. Thus,

Rxx(t1, t2) =
M∑
k=1

E[|Ak|2]E[ej2π(fkt1−fkt2)] =
M∑
k=1

E[|Ak|2]E[ej2πfk(t1−t2)]

Thus, this process is WSS.

PROBLEM 2:
Prove the following:

a) |RXX(τ)| ≤ RXX(0)

b) |RXY (τ)| ≤
√
RXX(0)RY Y (0)

c) RXX(τ) = R∗XX(−τ)

d)
N∑
k=1

N∑
l=1

aka
∗
lRXX(tk − tl) ≥ 0 ∀N > 0, ∀t1 < t2 < · · · < tN and complex ai’s

Solution: Let us solve part b) first.



b)

E[|x(t)− αy(t− τ)|2] ≥ 0

E[|x(t)|2] + |α|2|y(t− τ)|2 − α∗x(t)y∗(t− τ)− αx∗(t)y(t− τ)] ≥ 0

Rxx(0) + |α|2Ryy(0)− α∗Rxy(τ)− αR∗xy(τ) ≥ 0

differentiating w.r.t α∗, αRyy(0)−Rxy(τ) = 0 ⇒ α =
Rxy(τ)

Ryy(0)

Thus, Rxx(0) + |Rxy(τ)

Ryy(0)
|2Ryy(0)− Rxy(τ)

Ryy(0)
R∗xy(τ)−

R∗xy(τ)

R∗yy(0)
Rxy(τ) ≥ 0

Rxx(0)Ryy(0) ≥ |Rxy(τ)|2

|Rxy(τ)| ≤
√
Rxx(0)Ryy(0)

a) This result is obtained by substituting y = x in part b)

c)

R∗xx(−τ) = E[x(t)x∗(t− τ)]∗ = E[x∗(t)x(t− τ)]

= E[x(t)x∗(t− τ)] = Rxx(τ)

d) Let x(t) denote a WSS process. Consider y(t) =
N∑
k=1

akx(tk − t).

E[|y(t)|2] ≥ 0⇒ E[

N∑
k=1

akx(tk − t)
N∑
l=1

a∗l x
∗(tl − t)] ≥ 0

N∑
k=1

N∑
l=1

aka
∗
l E[x(tk − t)x∗(tl − t)] ≥ 0

N∑
k=1

N∑
l=1

aka
∗
lRxx(tk − tl) ≥ 0

PROBLEM 3:

a) Only one of the switches S1, S2 and S3 is active at a time. S1 closes twice as fast as S2.
S2 closes twice as fast as S3.The signals are distributed normally as follows:

A ∼ N (−1, 4), B ∼ N (0, 1) and C ∼ N (1, 4)

Figure 1: Switch

i) What is P (X ≤ 1)?



ii) Given X > −1, which signal is most likely transmitted?

b) There are two roads from A to B and two roads from B to C. Each of the four roads
have probability p of being blocked by snow independently of all the others. What is the
probability of an open road from A to C?

Solution:

a) P (X ≤ 1) =
3∑
i=1

P (X ≤ 1|Si is active)P (Si is active).

P (X ≤ 1|Si is active) =


P (A ≤ 1) i = 1

P (B ≤ 1) i = 2

P (C ≤ 1) i = 3

(1)

Computing the CDF for a variable M having normal distribution N (µ, σ2):

P (M ≤ b) =

∫ b

−∞

1√
2πσ2

e−
(m−µ)2

2σ2 dm

Considering y = m−µ
σ , we obtain dy = dm

σ and limits change to −∞ and b′ = b−µ
σ

P (M ≤ b) =

∫ b′

−∞

1√
2π
e−y

2/2dy = P (Y ≤ b′ = b− µ
σ

) where Y =
M − µ
σ

Thus, let Y be a random variable having standard normal distribution N (µ, σ2).

P (A ≤ 1) = P (Y ≤ (1− (−1))/2) = P (X ≤ 1) = 0.8413

P (B ≤ 1) = P (Y ≤ (1− 0)/1) = P (X ≤ 1) = 0.8413

P (C ≤ 1) = P (Y ≤ (1− (1))/2) = P (X ≤ 0) = 0.5

Similarly, for (ii),

P (A ≤ −1) = P (Y ≤ (−1− (−1))/2) = P (X ≤ 0) = 0.5⇒ P (A > −1) = 0.5

P (B ≤ −1) = P (Y ≤ (−1− 0)/1) = P (X ≤ −1) = 0.1587⇒ P (B > −1) = 0.8413

P (C ≤ −1) = P (Y ≤ (−1− (1))/2) = P (X ≤ −1) = 0.1587⇒ P (C > −1) = 0.8413

The CDF for standard normal distribution is obtained from the table.
Now, P (S1 is active) : P (S2 is active) : P (S3 is active) = 4 : 2 : 1
⇒ P (S1 is active) = 4/7, P (S2 is active) = 2/7 and P (S3 is active) = 1/7.

P (X ≤ 1) = (4/7)× 0.8413 + (2/7)× 0.8413 + (1/7)× 0.5 = 0.7925

P (X ≤ −1) = (4/7)× 0.5 + (2/7)× 0.1587 + (1/7)× 0.1587 = 0.3537⇒ P (X > −1) = 0.6463

When X > −1, the signal which was most likely to be transmitted is computed based on
aposteriori probability,

P (X = A|X > −1) =
P (X > −1|X = A)P (X = A)

P (X > −1)
=

0.5× 4
7

0.6463
= 0.4421

P (X = B|X > −1) =
P (X > −1|X = B)P (X = B)

P (X > −1)
=

0.8413× 2
7

0.6463
= 0.3719

P (X = C|X > −1) =
P (X > −1|X = C)P (X = C)

P (X > −1)
=

0.8413× 1
7

0.6463
= 0.1859

Thus, the most likely transmitted signal is A.



b) Let r1 and r2 be roads from A to B and r3 and r4 be roads from B to C. The probability
that a road is not blocked is 1− p. Thus,

P(Road open from A to C) = P(Road open from A to B)P(Road open from B to C)

P(Road open from A to B) = P(Road open from A to B) due to symmetry

P(Road open from A to B) = P(r1 or r1 is open)

= p(1− p) + (1− p)p+ (1− p)2 = 1− p2

P(Road open from A to C) = (1− p2)2

PROBLEM 4: Prove the Cauchy Schwarz inequality for random variables: For two random
variables X and Y ,

|Cov(X,Y )| ≤
√

Var(X)Var(Y ).

Solution: Let X and Y be two random variables. Let us convert them to random variables A
and B which have zero mean and variance equal to 1.

A =
X − E[X]

σX
, B =

Y − E[Y ]

σY

Now, as E[(A+B)2] ≥ 0 and E[(A−B)2] ≥ 0, we have,

E[A2 +B2 + 2AB] ≥ 0⇒ E[A2] + E[B2] + 2E[AB] ≥ 0

E[AB] ≥ (−σA − σB)/2 = −1

E[A2 +B2 − 2AB] ≥ 0⇒ E[A2] + E[B2]− 2E[AB] ≥ 0

E[AB] ≤ (σA + σB)/2 = 1

⇒ |E[AB]| ≤ 1

Equality occurs when E[(A + B)2] = 0 or E[(A − B)2] = 0, i.e. when A = −B or A = B.
Considering X and Y ,

|Cov(X,Y )| = |E[(X − E[X])(Y − E[Y ])]| = |E[σXAσYB]|
= |σXσYE[AB]| = |σXσY ||E[AB]|

≤
√
σ2Xσ

2
Y

=
√

Var(X)Var(Y )


