Indian Institute of Science

E9-252: Mathematical Methods and Techniques in Signal Processing
Instructor: Shayan G. Srinivasa
Homework \#3 Solutions, Fall 2017
Solutions prepared by Priya J Nadkarni
Late submission policy: Points scored $=$ Correct points scored $\times e^{-d}, d=$ \# days late
Assigned date: Sept. $11^{\text {th }} 2017$
Due date: Sept. $18^{\text {th }} 2017$ by end of the day

PROBLEM 1:

Solve problems 4.6 and 4.11 from P. P. Vaidyanathan's book. ($8+10$ points)

Solution:

(4.6) For the first system, we obtain,

$$
\begin{aligned}
y_{0}(n) & =h_{k}(n) * y(n) \Rightarrow Y_{0}(z)=H_{k}(z) Y(z) \\
h_{k}(n) & =h_{0}(n) \cos \frac{2 \pi k n}{L}=\frac{h_{0}(n) e^{\frac{j 2 \pi k n}{L}}+h_{0}(n) e^{\frac{-j 2 \pi k n}{L}}}{2} \\
H_{k}(z) & =\frac{H_{0}\left(e^{\frac{-j 2 \pi k}{L}} z\right)+H_{0}\left(e^{\frac{j 2 \pi k}{L}} z\right)}{2} \\
Y_{0}(z) & =\frac{H_{0}\left(e^{\frac{-j 2 \pi k}{L}} z\right) Y(z)+H_{0}\left(e^{\frac{j 2 \pi k}{L}} z\right) Y(z)}{2}
\end{aligned}
$$

For the second system, $y_{1}(n)=\left(h_{0}(n) * y(n)\right) \cos \frac{2 \pi k n}{L}$. Let $x(n)=h_{0}(n) * y(n)$, then,

$$
\begin{aligned}
X(z) & =H_{0}(z) Y(z) \\
Y_{1}(z) & =\frac{X\left(e^{\frac{-j 2 \pi k}{L}} z\right)+X\left(e^{\frac{j 2 \pi k}{L}} z\right)}{2} \\
& =\frac{H_{0}\left(e^{-\frac{-j 2 \pi k}{L}} z\right) Y\left(e^{\frac{-j 2 \pi k}{L}} z\right)+H_{0}\left(e^{\frac{j 2 \pi k}{L}} z\right) Y\left(e^{\frac{j 2 \pi k}{L}} z\right)}{2}
\end{aligned}
$$

$Y_{0}(z)=Y_{1}(z)$ only if $Y\left(e^{\frac{-j 2 \pi k}{L}} z\right)=Y(z)$. Otherwise, $Y_{1}(z) \neq Y_{0}(z)$. One such case where they are equal is when $k \bmod L=0$. Another example where it is equal is when the signal has been upsampled by L (Refer Prob 4.5). Thus, they are not necessarily the same. They may be same in some cases, but differ in others.
(4.11) Consider the following system:

When we pass $\mathrm{x}(\mathrm{n})$ through the filter $H(z)$, we obtain

$$
X_{1}(z)=X(z) H(z)
$$

When we downsample $x_{1}(n)$ by 2 , we obtain,

$$
X_{2}(z)=\frac{X_{1}(z)+X_{1}(-z)}{2}
$$

When we pass $x_{2}(n)$ through the filter $H(z)$, we obtain,

$$
X_{3}(z)=X_{2}(z) H(z)
$$

When we downsample $x_{3}(n)$ by 2 , we obtain,

$$
S(z)=\frac{X_{3}(z)+X_{3}(-z)}{2}
$$

When we upsample $s(n)$ by 4 , we obtain,

$$
Y(z)=S\left(z^{4}\right)
$$

4.11)

PROBLEM 2:
Consider the following system:

Suppose the spectrum of the original signal and transfer function is as given above.
Analyze the spectrum of $y(t)$. Analyze the output spectrum if the decimator and expander and interchanged. (4+3 points)
Solution: Let $x_{1}(n)$ and $x_{2}(n)$ denote the intermediate signals.

If the decimator and the interpolator are exchanged,

$$
\begin{aligned}
X_{1}(z) & =X\left(z^{3}\right) \\
X_{2}(z) & =\frac{1}{3} \sum_{k=0}^{2} X_{1}\left(z^{1 / 3} e^{-j \frac{2 \pi k}{3}}\right) \\
& =\frac{1}{3} \sum_{k=0}^{2} X\left(\left(z^{1 / 3} e^{-j \frac{2 \pi k}{3}}\right)^{3}\right)=\frac{1}{3} \sum_{k=0}^{2} X(z)=X(z) \\
Y(z) & =3 X(z)
\end{aligned}
$$

The last equality follows as $X(z)$ is bandlimited to $\frac{\pi}{3}$.

