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PROBLEM 1:
Problem 4.2

Solution:
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PROBLEM 2:
Problem 4.12

Solution:

a) H(z)→ FIR filter of length 10
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b) Let H(z) be an IIR filter.
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PROBLEM 3:
Problem 4.14

Solution:
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, R > 0 and θ real
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PROBLEM 2:
Devise an efficient architecture to exploit the mirror/symmetric properties of polyphase com-
ponents in decimation and interpolation filters.
Solution:

For decimation filter, we use Type 1 polyphase representation H(z) =

M−1∑
i=0

z−iEi(z
M ) to obtain

the polyphase components Ei(z)’s. For M = 2, we obtain the following:

Now, let H(z) be a linear phase filter of length N . Let H(z) =
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Thus, the filters are again symmetric and we decompose it further.
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We exploit the mirror property by designing only one filter and at the input of the filter adding
the respective inputs where the input from upper branch is in the reverse order when compared



to that of lower branch.
Let us consider an example. Let N = 4 and H(z) = 1 + 2z−1 + 2z−2 + z−3. By Type 1
decomposition, E0(z) = 1 + 2z−1 and E1(z) = 2 + z−1. As they are mirrors of each other, we
can use one filter where the inputs from the two branches are added accordingly and given to
a linear system as follows: Similarly for interpolation, we use Type 2 polyphase representation

H(z) =

M−1∑
i=0

z−(M−1−i)Ri(z
M ) to obtain the polyphase components Ri(z

M )’s. For M = 2, we

obtain the following:

When N is odd, we obtain symmetric filters which are further deomposed. When N is even,

the relation between R0(z) and R1(z) is R0(z) = z−(
N
2
−1)R1(z

−1). As the interpolation filter
in each branch is followed by expander and there is a delay in the first branch, we obtain the
output of the system as,

Y (z) = (z−1R0(z
2) +R1(z

2))X(z2)

= z−1R0(z
2)X(z2) +R1(z

2)X(z2)

Using the filter R1(z) in the lower branch in one clock cycle and the same filter with the input
order reversed in the next clock cycle to obtain the output in the upper branch, we obtain
the output y(n). This is equivalent to the final decomposition in the figure as the expander
would introduce zeros while expanding and it together with the delay would be equivalent
to interleaving the outputs from the component filters. If we consider the same filter H(z) =
1+2z−1+2z−2+z−3, by Type 2 decomposition, we obtain R0(z) = 2+z−1 and R1(z) = 1+2z−1.
Thus, using the filter for the upper branch and lower branch in alternate cycles, we obtain:


