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PROBLEM 1:
Problem 5.15 from P.P Vaidyanathan’s Book

Solution:
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Note that the denominator doesn’t go to 0 as iJ is not a multiple of M.

If J and M are relatively prime, iJ cannot be a multiple of M as i < M always.

Thus, when J and M are relatively prime,
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X(z)M = z−(M−1)JX(z)

=⇒ X̂(n) = x(n− (M − 1)J) (we obtain perfect reconstruction)



If J and M are not relatively prime, then let g = gcd(M,J)

Choose i = M
gcd(M,J) . Observe i < M . Thus, iJ = M
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This is a multiple of M as J
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∴ X̂(z) has atleast one more term other than z−(M−1)J

M X(z)M, that is,
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Thus, X̂(z) has aliasing components and hence perfect reconstruction cannot be obtained as
x̂(n) would not be a scaled and time shifted version of x(n).

Thus, perfect reconstruction is achieved iff M and J are relatively prime.

PROBLEM 2:
Problem 5.18 from P.P Vaidyanathan’s Book

Solution:

Now, as the choice of filters are such that there is perfect reconstruction, thus,
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If l = 0, then there is no change ⇒ X̂1(n) = X̂(n) = cx(n− n0)⇒ Perfect reconstruction.
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as the system doesn’t satisfy the perfect reconstruction property , we cannot recover x(n).

PROBLEM 3:
Problem 5.33 from P.P Vaidyanathan’s Book

Solution: Suppose the system has PR property, then
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Now if we replace the filters by Hk(z2) and Fk(z2)
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Thus, perfect reconstruction can be obtained if aliasing is cancelled. Let us check if aliasing is
cancelled. For 1 ≤ g ≤M − 1,

1

M

M−1∑
k=0

Hk(z2W 2g)Fk(z2) =
1

M

M−1∑
k=0

Hk(z2W l)Fk(z2) where l = 2g mod M

1

M

M−1∑
k=0

Hk(z2W 2g)Fk(z2) =

{
cz−2n0 2g mod M

0 else

2g mod M = 0 =⇒M is even as 1 ≤ g ≤M − 1

Hence, when M is even there is aliasing and perfect reconstruction cannot be obtained. When
M is odd, there is no aliasing and hence from (1), perfect reconstruction is obtained


