Indian Institute of Science
E9—252: Mathematical Methods and Techniques in Signal Processing
Instructor: Shayan G. Srinivasa
Homework #5 Solutions, Fall 2017

Solutions prepared by Priya J Nadkarni

Solutions scribed by Harshitha Srinivas
Late submission policy: Points scored = Correct points scored x e~?, d = # days late
Assigned date: Oct. 27 2017 Due date: Oct. 9" 2017 by end of the day

PROBLEM 1:
Problem 5.15 from P.P Vaidyanathan’s Book

Solution:
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Note that the denominator doesn’t go to 0 as iJ is not a multiple of M.

If J and M are relatively prime, iJ cannot be a multiple of M as ¢ < M always.

M-1
Thus, when J and M are relatively prime, Z W= =0,V #0.
k=0
R S—(M—1)J
= X(2) = ——X(:)M = 2~ M= X (7)

— X(n) = z(n—(M-1)J) (we obtain perfect reconstruction)



If J and M are not relatively prime, then let g = ged(M, J)
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. X(2) has atleast one more term other than E—r—X(2)M, that is,
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X(z) = Z—(M—l)JX(Z) + Z—(M—l)JX(ZWW) + other terms

Thus, X (z) has aliasing components and hence perfect reconstruction cannot be obtained as
Z(n) would not be a scaled and time shifted version of z(n).

Thus, perfect reconstruction is achieved iff M and J are relatively prime.

PROBLEM 2:
Problem 5.18 from P.P Vaidyanathan’s Book

Solution:

Now, as the choice of filters are such that there is perfect reconstruction, thus,
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If we replace Fy(z) by Fj(2W?) then,
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Let us define Gi(2) = 4 S o He(zW¥)Fi(2), 0<i<M —1

If | = 0, then there is no change = X;(n) = X (n) = ¢(n — ng) = Perfect reconstruction.
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as the system doesn’t satisfy the perfect reconstruction property , we cannot recover x(n).

PROBLEM 3:
Problem 5.33 from P.P Vaidyanathan’s Book

Solution: Suppose the system has PR property, then



1
i Hy(2)Fr(z) = cz7" (PR property)
k=0
M-1
and L Z Hiy(zW9Fi(z) = 0,¥g:1<g<M-1
M k:(] ) — —

Hy (22 Fp(2%) = cz—2m0 (1)

Thus, perfect reconstruction can be obtained if aliasing is cancelled. Let us check if aliasing is
cancelled. For 1 <g< M —1,
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Hence, when M is even there is aliasing and perfect reconstruction cannot be obtained. When
M is odd, there is no aliasing and hence from (1), perfect reconstruction is obtained



