Indian Institute of Science
E9-252: Mathematical Methods and Techniques in Signal Processing
Instructor: Shayan G. Srinivasa
Homework \#6 Solutions, Fall 2017
Solutions prepared by Priya J Nadkarni
Late submission policy: Points scored $=$ Correct points scored $\times e^{-d}, d=\#$ days late
Assigned date: Oct. $9^{\text {th }} 2017$
Due date: Oct. $23^{\text {rd }} 2017$ by end of the day

## PROBLEM 1:

Problem 3.19 from P.P Vaidyanathan's Book
Solution: From the figure in the question, we obtain

$$
G_{m}(z)=\frac{k_{m}^{*}+z^{-1} G_{m-1}(z)}{1+k_{m} z^{-1} G_{m-1}(z)}
$$

The poles of $G_{m}(z)$ are the zeros of $1+k_{m} z^{-1} G_{m-1}(z)$. Thus,

$$
\begin{aligned}
1+k_{m} z^{-1} G_{m-1}(z) & =0 \Longrightarrow z^{-1}=-\frac{1}{k_{m} G_{m-1}(z)} \\
z & =-k_{m} G_{m-1}(z) \Longrightarrow|z|=\left|k_{m}\right|\left|G_{m-1}(z)\right|=\left|k_{m}\right|<1
\end{aligned}
$$

Note that $z$ is a variable in the above case. Thus, the poles of $G_{m}(z)$ are inside unit circle. As $\left|G_{m-1}(z)\right|=1 \Longrightarrow G_{m-1}(z)=\mathrm{e}^{j f(z)}$.

$$
\left|G_{m}(z)\right|=\left|\frac{k_{m}^{*}+z^{-1} G_{m-1}(z)}{1+k_{m} z^{-1} G_{m-1}(z)}\right|=\frac{\left|k_{m}^{*}+z^{-1} G_{m-1}(z)\right|}{\left|1+k_{m} z^{-1} G_{m-1}(z)\right|}
$$

If $k_{m}=a+j b$,

$$
\begin{aligned}
\left|k_{m}^{*}+z^{-1} G_{m-1}(z)\right|= & |a-j b+\cos (f(z)-1)+j \sin (f(z)-1)| \\
= & \left(a^{2}+\cos ^{2}(f(z)-1)+2 a \cos (f(z)-1)+b^{2}+\sin ^{2}(f(z)-1)-2 b \sin (f(z)-1)\right)^{1 / 2} \\
\left|1+k_{m} z^{-1} G_{m-1}(z)\right|= & |1+(a+j b)(\cos (f(z)-1)+j \sin (f(z)-1))| \\
= & \left(1+a^{2} \cos ^{2}(f(z)-1)+b^{2} \sin ^{2}(f(z)-1)-2 b \sin (f(z)-1)+2 a \cos (f(z)-1)\right. \\
& -2 a b \cos (f(z)-1) \sin (f(z)-1)+b^{2} \cos ^{2}(f(z)-1)+a^{2} \sin ^{2}(f(z)-1) \\
& +2 a b \cos (f(z)-1) \sin (f(z)-1))^{1 / 2} \\
= & \left(1+a^{2}+b^{2}-2 b \sin (f(z)-1)+2 a \cos (f(z)-1)\right)^{1 / 2} \\
= & \left|k_{m}^{*}+z^{-1} G_{m-1}(z)\right| \Longrightarrow\left|G_{m}(z)\right|=1
\end{aligned}
$$

Part b) follows from induction using part a).

## PROBLEM 2:

Problem 3.20 from P.P Vaidyanathan's Book
Solution: As $P_{0}(z)$ is hermitian, $\tilde{P}_{0}(z)=z^{N} P_{0}(z)$. As $P_{1}(z)$ is generalized hermitian, $\tilde{P}_{1}(z)=$ $c z^{N} P_{1}(z)$, where $|c|=1$. We prove the result by expressing $A_{0}(z), A_{1}(z)$ and $d$ in terms of $c$, $P_{0}(z), P_{1}(z)$ and $D(z)$.

$$
\begin{aligned}
H_{0}(z) & =\frac{\beta A_{0}(z)+\beta^{*} A_{1}(z)}{2} \Longrightarrow P_{0}(z)=\frac{\beta A_{0}(z)+\beta^{*} A_{1}(z)}{2} D(z) \\
H_{1}(z) & =d \frac{\beta A_{0}(z)-\beta^{*} A_{1}(z)}{2} \Longrightarrow P_{1}(z)=d \frac{\beta A_{0}(z)-\beta^{*} A_{1}(z)}{2} D(z) \\
\Longrightarrow A_{0}(z) & =\left(\frac{P_{0}(z)}{D(z)}+\frac{P_{1}(z)}{d D(z)}\right) \frac{1}{\beta} \text { and } A_{1}(z)=\left(\frac{P_{0}(z)}{D(z)}-\frac{P_{1}(z)}{d D(z)}\right) \frac{1}{\beta^{*}}
\end{aligned}
$$

$$
\left|H_{0}(z)\right|^{2}+\left|H_{1}(z)\right|^{2}=1 \Longrightarrow\left|P_{0}(z)\right|^{2}+\left|P_{1}(z)\right|^{2}=|D(z)|^{2} \Longrightarrow z^{N} P_{0}^{2}(z)+c z^{N} P_{1}^{2}(z)=|D(z)|^{2}
$$

$$
\begin{aligned}
\left|A_{0}^{2}(z)\right| & =\frac{1}{|D(z)|^{2}} \frac{z^{N}}{\beta \beta^{*}}\left(P_{0}(z)+\frac{P_{1}(z)}{d}\right)\left(P_{0}(z)+c \frac{P_{1}(z)}{d^{*}}\right) \\
& =\frac{z^{N}}{|D(z)|^{2}}\left(P_{0}^{2}(z)+\frac{c P_{0}(z) P_{1}(z)}{d^{*}}+c P_{1}^{2}(z)+\frac{P_{0}(z) P_{1}(z)}{d}\right) \\
& =\frac{1}{|D(z)|^{2}}\left(|D(z)|^{2}+\left(\frac{c}{d^{*}}+\frac{1}{d}\right) P_{0}(z) P_{1}(z)\right) \\
& =1+\left(\frac{c}{d^{*}}+\frac{1}{d}\right) \frac{P_{0}(z) P_{1}(z)}{|D(z)|^{2}} . \\
\left|A_{1}^{2}(z)\right| & =\frac{1}{|D(z)|^{2}} \frac{z^{N}}{\beta \beta^{*}}\left(P_{0}(z)-\frac{P_{1}(z)}{d}\right)\left(P_{0}(z)-c \frac{P_{1}(z)}{d^{*}}\right) \\
& =\frac{z^{N}}{|D(z)|^{2}}\left(P_{0}^{2}(z)-\frac{c P_{0}(z) P_{1}(z)}{d^{*}}+c P_{1}^{2}(z)-\frac{P_{0}(z) P_{1}(z)}{d}\right) \\
& =1-\left(\frac{c}{d^{*}}+\frac{1}{d}\right) \frac{P_{0}(z) P_{1}(z)}{|D(z)|^{2}} .
\end{aligned}
$$

Let us choose $d:\left(\frac{c}{d^{*}}+\frac{1}{d}\right)=0$, then, $\left|A_{0}^{2}(z)\right|=\left|A_{1}^{2}(z)\right|=1$. We can choose such $d$ as $\frac{c}{d^{*}}=\frac{1}{d} \Longrightarrow|c|=1$. Thus, we can obtain $A_{0}(z)$ and $A_{1}(z)$ as unit magnitude all pass filters with $|\beta|=|d|=1$.

## PROBLEM 3:

Problem 3.21 from P.P Vaidyanathan's Book
Solution: If $A_{1}(z)=c A_{0}(z)$, then $G(z)=(1+c) A_{0}(z) \Longrightarrow|G(z)|=|1+c|\left|A_{0}(z)\right|=|1+c| b$ where $\left|A_{0}(z)\right|=b$. Thus, $G(z)$ is all pass filter. If $G(z)=A_{0}(z)+A_{1}(z)$ is all pass filter, then, as $A_{0}(z)$ and $A_{1}(z)$ are all pass filters they can be represented by,

$$
A_{0}(z)=b e^{j f(z)} \text { and } A_{1}(z)=c e^{j h(z)}
$$

$G(z)$ is obtained as:

$$
\begin{aligned}
G(z) & =A_{0}(z)+A_{1}(z)=b e^{j f(z)}+c e^{j h(z)} \\
& =b \cos f(z)+j b \sin f(z)+c \cosh (z)+j c \sinh (z) \\
|G(z)|^{2} & =b^{2} \cos ^{2} f(z)+c^{2} \cos ^{2} h(z)+2 b c \cos f(z) \cosh (z)+b^{2} \sin ^{2} f(z)+c^{2} \sin ^{2} h(z)+2 b c \sin f(z) \sinh (z) \\
& =b^{2}+c^{2}+2 b c \cos (f(z)-h(z))
\end{aligned}
$$

As $b, c$ and $|G(z)|^{2}$ are constant, thus,

$$
\begin{aligned}
\cos (f(z)-h(z)) & =d(\text { const }) \Longrightarrow f(z)-h(z)=\cos ^{-1} d=d^{\prime} \Longrightarrow h(z)=f(z)-d^{\prime} \\
\Longrightarrow A_{1}(z) & =c e^{j h(z)}=c e^{j f(z)-d^{\prime}}=m A_{0}(z)
\end{aligned}
$$

