Unique Representation Theorem

Theorem 1. Let S be a vector space and $T \subset S$ be non empty. The set T is linearly independent iff for each non-zero $\underline{x} \in \operatorname{span}(T)$, there is exactly one finite subset of T denoted by $\left\{\underline{p_{1}}, \underline{p_{2}}, \ldots, \underline{p_{n}}\right\}$ and unique set of scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that,

$$
\begin{equation*}
\underline{x}=c_{1} \underline{p_{1}}+c_{2} \underline{p_{2}}+\cdots+c_{n} \underline{p_{n}} \tag{1}
\end{equation*}
$$

Proof.

Linear independence \Rightarrow Unique Representation

We prove this by contradiction. Let T be a linearly independent set. Let us assume that there exists $\underline{x} \in \operatorname{span}(T)$ whose representation using T is not unique. Thus, there exists two subsets of T, namely $P=\left\{\underline{p_{1}}, \underline{p_{2}}, \ldots, \underline{p_{m}}\right\}$ and $Q=\left\{\underline{q_{1}}, \underline{q_{2}}, \ldots, \underline{q_{n}}\right\}$ such that,

$$
\underline{x}=\overline{\sum_{i=1}^{m}} c_{i} \underline{p_{i}}=\sum_{i=1}^{n} d_{i} \underline{q_{i}}
$$

where c_{i} 's and d_{i} 's are non-zero. Rearranging the terms, we obtain,

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i} \underline{p_{i}}-\sum_{i=1}^{n} d_{i} \underline{q_{i}}=\underline{0} \tag{2}
\end{equation*}
$$

As $\underline{p_{i}}$'s and \underline{q}_{i} 's belong to T, if $P \cap Q=\emptyset$ then all $\underline{p_{i}}$'s and $\underline{q_{i}}$'s are different. This contradicts the fact that T is a linearly independent set as their non trivial linear combination cannot sum to $\underline{0}$. Hence, there must be some overlap between the two sets.

Let $m<n$. Equation 2 holds only if for every $\underline{p_{i}}$, there exists some q_{j} such that $\underline{p_{i}}=q_{j}$ and $c_{i}-d_{j}=0$. This is true as only trivial linear combination of the vectors in T can be $\underline{0}$. Renumbering the elements in Q, we obtain

$$
\begin{equation*}
\underline{p_{i}}=\underline{q_{i}} \text { and } c_{i}=d_{i} . \tag{3}
\end{equation*}
$$

Thus, $P \subset Q$. From equation 2 and 3 ,

$$
\begin{equation*}
\sum_{i=m+1}^{n} d_{i} \underline{q_{i}}=\underline{0} \tag{4}
\end{equation*}
$$

As, if q_{i} 's are nonzero they should be linearly independent and d_{i} are non-zero, the only possible solution is $\underline{q}_{i}=\underline{0}$. Neglecting the zero vector, we redefine $Q=\left\{\underline{q_{1}}, \underline{q_{2}}, \ldots, \underline{q_{m}}\right\}=P$. Thus, the representation is unique.

Unique Representation \Rightarrow Linear independence

We prove this by contradiction. Let every vector $\underline{x} \in \operatorname{span}(T)$ have a unique representation in terms of vectors in $T=\left\{\underline{t_{1}}, \underline{t_{2}}, \ldots, \underline{t_{\underline{k}}}\right\}$. Let us assume that T is a linearly dependent set, then there exists $a_{1}, a_{2}, \ldots, a_{k}$, where atleast one a_{i} is non-zero, such that,

$$
\begin{equation*}
\sum_{\substack{i=1 \\ k}} a_{i} \underline{t_{i}}=0 \tag{5}
\end{equation*}
$$

Let a_{1} be non-zero. Consider $\underline{x}=\underline{t_{1}} \in \operatorname{span}(T)$. From equation 5,

$$
\begin{equation*}
\underline{x}=\underline{t_{1}}=-\frac{1}{a_{1}} \sum_{i=2}^{k} a_{i} \underline{t_{i}} . \tag{6}
\end{equation*}
$$

As \underline{x} doesnot have a unique representation, this leads to a contradiction. Hence, T is a linearly independent set.

