NNSP-1

Homework \#3

Solution for 5.1

Figure 1 - Plot of $P\left(\lambda m_{1}, m_{1}\right)$ versus λ for $N=1,5,15,25$
In Figure 1, we see that P value is $\frac{1}{2}$ for each value of m_{1}.

Solution for 5.8

Given :

$$
\begin{aligned}
y(i) & =\sum_{j=1}^{K} w_{j}(n) \exp \left(\frac{1}{2 \sigma(n)^{2}}\left\|x(i)-\mu_{j}(n)\right\|^{2}\right) \\
E & =\frac{1}{2} \sum_{i=1}^{n} e^{2}(i) \\
e(i) & =d(i)-y(i)
\end{aligned}
$$

1. The partial derivative of E with respect to $w_{j}(n), \mu_{j}(n)$ and σ is given by
$\mathrm{a} \frac{\partial E}{\partial w_{j}(n)}=-e(j) \exp \left(-\frac{1}{2 \sigma^{2}(n)}\left\|x(j)-\mu_{j}(n)\right\|^{2}\right)$
$\mathrm{b} \frac{\partial E}{\partial \mu_{j}(n)}=-\frac{1}{2 \sigma^{2}(n)} e(j) w_{j} \exp \left(-\frac{1}{2 \sigma^{2}(n)}\left\|x(j)-\mu_{j}(n)\right\|^{2}\right)\left(x(i)-\mu_{j}(n)\right)$
$\mathrm{c} \frac{\partial E}{\partial \sigma(n)}=-\frac{1}{\sigma^{3}(n)} \sum_{j=1}^{N} e(j) w_{j} \exp \left(-\frac{1}{2 \sigma^{2}(n)}\left\|x(j)-\mu_{j}(n)\right\|^{2}\right)\left\|x(j)-\mu_{j}(n)\right\|^{2}$
2. The update formulas for all the network parameters are as follows :
a $w_{j}(n+1)=w_{j}(n)-\eta_{w} \frac{\partial E}{\partial w_{j}}$
b $\mu_{j}(n+1)=\mu_{j}(n)-\eta_{\mu} \frac{\partial E}{\partial \mu_{j}}$
c $\sigma(n+1)=\sigma(n)-\eta_{\sigma} \frac{\partial E}{\partial \sigma}$
3. In clustering the potential function is sum of the squared distances between the cluster center and the data point. The gradient $\frac{\partial E}{\partial \mu_{j}(n)}$ is trying to minimize the distance between μ_{j}, cluster center and the data point $x(i)$.

Solution for 7.4

Given :

$$
\begin{equation*}
E=\sum_{i=1}^{N}\left(d_{i}-\sum_{j=1}^{m_{1}} w_{j} G\left(\left\|x_{i}-t_{j}\right\|\right)\right)^{2}+\lambda\left\|D F^{*}\right\|^{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
F^{*} & =\sum_{i=1}^{m_{1}} w_{i} G\left(\left\|x-t_{i}\right\|\right) \\
\left\|D F^{*}\right\|^{2} & =w^{\mathrm{T}} G_{0} w \tag{2}
\end{align*}
$$

We would like to minimize E with respect to w. Differentiating E with respect to w_{l} we get,

$$
\begin{equation*}
\frac{\partial E}{\partial w_{l}}=-2 \sum_{i=1}^{N}\left(d_{i} G\left(\left\|x_{i}-t_{l}\right\|\right)-\left(\sum_{j=1}^{m_{1}} w_{j} G\left(\left\|x_{i}-t_{i}\right\|\right)\right) G\left(\left\|x_{i}-t_{l}\right\|\right)\right)+2 \lambda G_{0} w \tag{3}
\end{equation*}
$$

If \hat{w} is an optimum w in equation (3), then we get

$$
\begin{align*}
G^{\mathrm{T}} d & =\left(G G^{\mathrm{T}}+\lambda G_{0}\right) \hat{w} \\
\hat{w} & =\left(G G^{\mathrm{T}}+\lambda G_{0}\right)^{-1} G^{\mathrm{T}} d \tag{4}
\end{align*}
$$

Solution for 7.5

Given :

$$
\begin{align*}
\int_{\Re^{m_{0}}}\|D F(x)\|^{2} d x & =\sum_{k=0}^{\infty} \int_{\Re^{m_{0}}}\left\|D^{k} F(x)\right\|^{2} d x \tag{5}\\
a_{k} & =\frac{\sigma^{2 k}}{k!2^{k}} \\
D^{2 k} & =\left(\nabla^{2}\right)^{k} \\
D^{2 k+1} & =\nabla\left(\nabla^{2}\right)^{k} \tag{6}
\end{align*}
$$

where ∇ and ∇^{2} is the usual gradient and Laplacian operator respectively.
From equation (5) LHS can be written as

$$
\begin{equation*}
\langle D F, D F\rangle_{\mathcal{H}}=\langle F, \tilde{D} D F\rangle_{\mathcal{H}} \tag{7}
\end{equation*}
$$

We know that $L=D \tilde{D}=\sum_{k=0}^{\infty}(-1)^{k} \nabla^{2 k}$ with

$$
\begin{align*}
D & =\sum_{k}^{\infty} \alpha_{k}^{\frac{1}{2}}\left(\frac{\partial}{\partial x_{1}}+\cdots+\frac{\partial}{\partial x_{m_{0}}}\right)^{k} \tag{8}\\
\tilde{D} & =\sum_{k}^{\infty}(-1)^{k} \alpha_{k}^{\frac{1}{2}}\left(\frac{\partial}{\partial x_{1}}+\cdots+\frac{\partial}{\partial x_{m_{0}}}\right)^{k} \tag{9}
\end{align*}
$$

Therefore from equations (7) and (8) we get

$$
\begin{equation*}
D F(x)=\sum_{k=0}^{\infty} \frac{\sigma^{k}}{k!2^{k}} \nabla^{k} F(x) \tag{10}
\end{equation*}
$$

Solution for 2

Figure 2 - Classification of a) Simple XOR b) Tiled XOR of size 3×3 and \mathbf{c}) Tiled XOR of size 4×4.

Observations : We have used MASS package in R to perform this experiment. The complexity of hidden nodes, keeping the kernel width same, increased with increase in size of tiled XOR. Set of decision boundaries shown in Figure 2 shows that as the size of tiled XOR increases, the decision boundary has to bend itself to accommodate the data points of similar class. The other observation is regarding the width (σ) of the kernel. The width $\sigma=0.6$ was used for simple XOR and $\sigma=0.4$ for the other two cases. If the spread of tiled XOR is more, one would require larger σ. However, if there is any addition of tiled XOR to the data set, one would have to introduce additional nodes in the system.

