E9-251: Signal Processing for Data Recording Channels

Exam \#2

Name:

Department:

Instructions:

- The paper contains 4 main questions. Attempt all the questions with careful reasoning and justifying your approach.
- Think carefully before you proceed and reason out your end results. The problems need more thought than calculations.
- The exam is of 3 hours duration.
- You can refer to any book/notes.
- Do not panic, do not cheat.
- Good Luck!

Question No	Max Points	Actual Score
1	25	
2	25	
3	20	
4	30	

Total:

1) The continuous time response of a Lorentzian channel in longitudinal recording is given by
$h(t)=\frac{A}{1+\left(\frac{2 t}{P W_{50}}\right)^{2}} ;-\infty \leq t \leq \infty$. Let the symbol density be $D=2$, and the system is
sampled at baud rate. We are interested in designing a zero forcing equalizer for this system as shown in Figure 1, i.e., $F(z) H(z)=1$.

Figure 1: Schematic for a zero forcing equalizer
(a) Sketch $h(t)$ for $D=2$ and baud rate sampling.
(b) Design a 3 tap zero forcing equalizer for this system.
(c) If noise $w(n)$ is Gaussian distributed $N\left(0, \sigma^{2}\right)$, what is the noise variance after zero forcing equalization? Is the noise power boosted?
(Hint: Sample $h(t)$ at times $t=k T, k=0, \pm 1$ and appropriately solve for $F(z)$)
2) Consider a simplified discrete version of a data storage channel as shown in Figure 2. Random but equally likely NRZ data $a_{k} \in\{-1,1\}$ is stored on a recording channel. The read back signal forms a discrete sequence $s(n)$. The goal would be to design an FIR equalizer $F(z)=\sum_{i=0}^{K} f_{i} z^{-i}$ of order K that matches a known partial response $\operatorname{target} P(z)=\sum_{i=0}^{L} p_{i} z^{-i}$ in the mean squared error (MSE sense).

Figure 2: Schematic of a partial response equalizer
(a) Formulate an expression for the mean square error. (Hint: Use the Hessian matrix form of representation for computational ease). Indicate in your expression all the dimensions of the matrices involved carefully.
(b) Prove that the optimal filter $\mathbf{F}=\mathbf{R}^{-1} \mathbf{Q P}$ where $\mathbf{R}:=\left[r_{i j}\right], r_{i j}=E\left(s_{n-i} s_{n-j}\right)$ and $\mathbf{Q}:=\left[q_{i j}\right], q_{i j}=E\left(s_{n-i} a_{n-j}\right)$. (Hint: the length of the vector \mathbf{F} must be exactly $K+1)$.
3) Consider a first order digital PLL shown in Figure 3.

Figure 3: Schematic of a first order digital PLL
(a) For a unit step phase input $\phi_{k}=u(k)$, find the phase error. Under what conditions for K_{t} will the phase error exhibit oscillatory behavior.
(b) Repeat part (a) for a frequency jump at the phase input i.e., $\phi_{k}=\lambda k u(k) .(10$ pts $)$
4) A random signal x has a probability density $f_{X}(x)$. The signal is valid in the range $[0, L]$. It is desired to quantize this signal over K uniform intervals over $[0, L]$. Over the $\mathrm{i}^{\text {th }}$ interval $\left[a_{i-1}, a_{i}\right]$ we choose a quantized level y_{i} representing that interval.
(a) Show that the average mean square distortion due to quantization is given by
$D=\sum_{i=1}^{K} \int_{a_{i-1}}^{a_{i}}\left(x-y_{i}\right)^{2} f_{X}(x) d x$
(b) Find the values of y_{i} that minimize the distortion function D.
(c) Suppose $f_{X}(x)$ is uniformly distributed over $[0, L]$ and we choose 2 equal subintervals for quantization. Using your intuition, how would you choose the two quantization levels that will minimize D ?
(d) If $D=0$, what should be the values of y_{i} and K ?

