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PROBLEM 1: Simplify the following multirate systems shown in Figure 1 as best as you can. Obtain the
simplified frequency response. Show all your steps carefully. (15 pts.)

SOLUTION:
We use the identities in Figure 2 to simplify the given transformations.

≡↑ L↓ M ↑ L ↓ M
if gcd(L,M) = 1

≡zk↓ M zMk ↓ M

≡↑ Lzk ↑ L zLk

≡zk↑ L
if k mod L 6= 0

↓ L y[n] = 0

x[n]

x[n]

x[n]

x[n]

y[n]

y[n]

y[n]

y[n]

y[n]

y[n]

y[n]x[n]

x[n]

x[n]

Identity 1:

Identity 2:

Identity 3:

Identity 4:

≡↑ L
x[n]

y[n]
Identity 5:

Identity 6:

Identity 7:

y[n]x[n]

≡↓ (M1 ×M2) ↓ M1 ↓ M2
x[n] y[n]

y[n]x[n]

≡ ↑ L1 ↑ L2
y[n]x[n]

↑ (L1 × L2)
x[n] y[n]

↓ L

Figure 2: Identities related to decimation, upsampling and delay operations.
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(Part a)

↑ 2 ↑ 5 ↓ 4 ↑ 2

↑ 2 ↓ 4 ↑ 5 ↑ 2

↑ 2 ↓ 4 ↑ 10

↑ 2 ↓ 2 ↓ 2 ↑ 10

↓ 2 ↑ 10

x[n]

x[n]

x[n]

x[n]

x[n]

y[n]

y[n]

y[n]

y[n]

y[n]

≡

≡

≡

≡

Using identity 1

Using identity 7

Using identity 6

Using identity 5

x1[n]

X1 (z) = 1
2

(
X(z

1
2 ) +X(−z 1

2 )
)

Therefore, Y (z) = X1

(
z10
)

= 1
2

(
X
(
z5
)

+X
(
−z5

))
.

(Part b)

↑ 7 z−8 ↓ 3 ↑ 3 z12 ↓ 14

↑ 7 z−8 ↓ 3 z4 ↑ 3 ↓ 14

↑ 7 z−8 z12 ↓ 3 ↑ 3 ↓ 14

↑ 7 z4 ↓ 3 ↑ 3 ↓ 14

↑ 7 z4 ↓ 3 ↓ 14 ↑ 3

↑ 7 z4 ↓ 7 ↓ 6 ↑ 3

Using identity 3

Using identity 2

Using identity 1

Using identity 6

y[n] = 0 Using identity 4

≡

≡

≡

≡

≡

≡

Therefore, Y (z) = 0.
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PROBLEM 2: Prove that decimation by M followed by expansion by L can be interchanged if L and M are
relatively prime. You must prove this result in the frequency domain representation. (10 pts.)

SOLUTION:

↓ M ↑ L

↑ L ↓ M

x[n]
x1[n]

x2[n]

y1[n]

y2[n]

Figure 3: Comparing the outputs by changing the order of decimator and upsampler.

From Figure 3,

X1 (z) =
1

M

M−1∑
i=0

X
(
z

1
M ej

2πi
M

)
=⇒ Y1 (z) = X1

(
zL
)

=
1

M

M−1∑
i=0

X
(
z
L
M ej

2πi
M

)
. (1)

Similarly,

X2 (z) = X
(
zL
)

Y2 (z) =
1

M

M−1∑
i=0

X2

(
z

1
M ej

2πi
M

)
=

1

M

M−1∑
i=0

X

((
z

1
M ej

2πi
M

)L)

=
1

M

M−1∑
i=0

X
(
z
L
M ej

2πiL
M

)
. (2)

To prove that Y1 (z) = Y2 (z)∀X (z), it is necessary and sufficient to satisfy the following condition:{
X
(
z
L
M ej

2πiL
M

)
| i = 0, 1, · · · ,M − 1

}
=

{
X
(
z
L
M ej

2πi
M

)
| i = 0, 1, · · · ,M − 1

}
∀X (z) (3)

i.e.,
{
ej

2πiL
M | i = 0, 1, · · · ,M − 1

}
=

{
ej

2πi
M | i = 0, 1, · · · ,M − 1

}
. (4)

Since ej2πk = 1∀k ∈ Z, we have ej
2πiL
M = ej

2π(iL mod M)
M . Hence, the equivalent condition is

{(iL) mod M | i = 0, 1, · · · ,M − 1} = {0, 1, · · · ,M − 1} . (5)

Let 0 ≤ i1 ≤M − 1 and 0 ≤ i2 ≤M − 1 such that i1 6= i2. Without loss of generality, consider i1 < i2. Using
the following identity on modulo operation

(a− b) mod M = (a mod M − b mod M) mod M,

4



we have,

((i1L) mod M − (i2L) mod M) mod M = ((i1 − i2)L) mod M. (6)

Case L and M are relatively prime:
Since 0 < i1 − i2 < M , and gcd (L,M) = 1, ((i1 − i2)L) mod M 6= 0. Therefore from (6),

((i1L) mod M − (i2L) mod M) mod M 6= 0,

=⇒ (i1L) mod M 6= (i2L) mod M.

We have proved that i1 6= i2 =⇒ (i1L) mod M 6= (i2L) mod M ∀i1, i2 ∈ {0, 1, 2 · · · ,M − 1} . Therefore,
when gcd (L,M) = 1, equation (5) holds true.
Case M divides L:
Let L = P ×M, P > 1. Therefore, it is possible to chose i1 = i2 +M . Under this condition,

((i1 − i2)L) mod M = (ML) mod M = 0.

Therefore,

((i1L) mod M − (i2L) mod M) mod M = 0

=⇒ (i1L) mod M = (i2L) mod M.

We have shown that for some choice of i1 6= i2, (i1L) mod M = (i2L) mod M . Hence, the values

{(iL) mod M}M−1i=0 are not distinct. Therefore, when M divides L, equation (5) does not hold true.
Case gcd (M,L) = G > 1:

Let M = G × PM and L = G × PL. We can chose i1 = i2 + G. Under this condition, ej2π
iL
M = e

j2π
iPL
PM .

Therefore,

{
e
j2π

iPL
PM | i = 0, 1, · · · ,M − 1

}
has PM distinct values. Therefore, equation (5) does not hold

true under this condition.
Hence, the equation (5) holds true iff L and M are relatively prime. This proves that M fold decimator and
L fold upsampler blocks can be interchanged iff L and M are relatively prime.
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PROBLEM 3: This problem has two parts

• A student was performing measurements on an oscillator. Over what period must the signal be averaged
so that he can claim that the device was producing frequencies accurately up to 0.25 KHz? (5 pts.)

• Suppose we are filtering a natural image using (a) 2D FFT (b) 2D Haar wavelet. Sketch the frequency
resolution in the 2D ω1 − ω2 frequency plane for both the cases. You can assume a N-level dyadic
decomposition. (15pts.)

SOLUTION:
a) By the time frequency uncertainty principle, we know that σ2

ωσ
2
t ≥ 1

4 . Thus, if a student should claim
that the device is producing frequencies accurately upto 0.25KHz, then,

σωσt ≥
1

2
⇒ σfσt ≥

1

4π
⇒ 250× σt ≥

1

4π
(As σf ≤ 0.25KHz)

σt ≥
1

4π × 250
= 318.31µs

Thus, the signal should be averaged over a period of atleast 318.31 µs to claim that the device produces
frequencies accurately upto 0.25 KHz.
The basic idea of this problem was to test the time-frequency uncertainty principle. If any variation of the
uncertainty principle has been used, then marks have been awarded.
b) Consider the 2D image to be given by {x[m,n]}m,n, then N-point 2D DFT is given as follows:

X[k, l] =
1√
NM

N−1∑
n=0

N−1∑
m=0

x[m,n]e−j2π[mk+nlN ]

Note that the FFT representation corresponds to the coefficients of the signal expansion in terms of the

exponential basis signals, namely, e−j2π[mk+nlN ]. These basis signals have frequency increasing uniformly.
Thus, the frequency resolution in the 2D ω1 − ω2 frequency plane is uniform as shown in the figure below.

Similarly, the DWT representation corresponds to the coefficients of the signal expansion in terms of the Haar
wavelet basis signals along the two axes of the image. In 1D, consider the signal to have M = 2N samples.
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The basis signals are given by {ψ(t), {ψ(2−1t− k)}k, . . . , {ψ(2N
−1
t− k)}k}. The frequency resolution of the

basis signals are decreasing dyadically. Note that for a discrete signal, the sampling frequency corresponds
to 2π. As image and music signals are low frequency signals, we consider the relative frequencies only from 0
to π

2 . Thus, the frequency resolution in the frequency plane is dyadically spaced from π
2N

to π
2 . Note that for

the jth level, the frequency resolution is π
2j . Similarly, for 2D too the frequency resolution in the 2D ω1 − ω2

frequency plane is dyadically spaced as shown in the figure below.
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PROBLEM 4: Consider a 3-channel filterbank with analysis filters H0(z), H1(z) and H2(z) across first three
branches respectively. Consider decimation rates over the three branches to be (a) (2, 3, 6) (b) (2, 4, 4). Derive
the conditions for alias free reconstruction from first principles. If the synthesis filters are F0(z), F1(z) and
F2(z), obtain the alias free distortion function. (25 pts.)

SOLUTION:
(a)

H0(z)

H1(z)

H2(z) F2(z)

F1(z)

F0(z)# 2

# 3

# 6

" 2

" 3

" 6

x[n] x0[n]

x1[n]

x2[n] x̂[n]

u0[n]

u1[n]

u2[n]

v0[n]

v1[n]

v2[n]

Figure 4: 3-channel filterbank with decimation rates (2,3,6)

Analysis filters - H0(z), H1(z), H2(z)
Synthesis filters - F0(z), F1(z), F2(z)
From Figure 4,

X0(z) = H0(z)X(z),

X1(z) = H1(z)X(z),

X2(z) = H2(z)X(z). (7)

uk[n] is obtained by downsampling xk[n] where k = 0, 1, 2.
For downsampling by M ,

UM (z) =
1

M

M−1∑
k=0

X0

(
z

1
M ωkM

)
, (8)

where ωkM = e
j2πk
M . After downsampling, we get

U0(z) =
1

2

1∑
k=0

X0

(
z

1
2ωk2

)
,

U1(z) =
1

3

2∑
k=0

X1

(
z

1
3ωk3

)
,

U2(z) =
1

6

5∑
k=0

X2

(
z

1
6ωk6

)
. (9)

vk[n] is obtained by upsampling uk[n] where k = 0, 1, 2.
For upsampling by L,

Vk(z) = Uk(zL) (10)
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After upsampling, we get

V0(z) = U0(z2) =
1

2

1∑
k=0

X0

(
zωk2

)
,

V1(z) = U1(z3) =
1

3

2∑
k=0

X1

(
zωk3

)
,

V2(z) = U2(z6) =
1

6

5∑
k=0

X2

(
zωk6

)
. (11)

At the output, we have

X̂(z) =

2∑
l=0

Fl(z)Vl(z)

= F0(z)V0(z) + F1(z)V1(z) + F2(z)V2(z)

=

(
F0(z)× 1

2

1∑
k=0

X0

(
zωk2

))
+

(
F1(z)× 1

3

2∑
k=0

X1

(
zωk3

))

+

(
F2(z)× 1

6

5∑
k=0

X2

(
zωk6

))
(12)

Using (7) in (12) we get

X̂(z) =

(
F0(z)× 1

2

1∑
k=0

H0

(
zωk2

)
X
(
zωk2

))
+

(
F1(z)× 1

3

2∑
k=0

H1

(
zωk3

)
X
(
zωk3

))

+

(
F2(z)× 1

6

5∑
k=0

H2

(
zωk6

)
X
(
zωk6

))

= F0(z)× 1

2

1∑
k=0

H0(z)X(z) + F0(z)× 1

2

1∑
k=0

H0(z)X(zωk2 )

+ F1(z)× 1

3

2∑
k=0

H1(z)X(z) + F1(z)× 1

3

2∑
k=0

H1(z)X(zωk3 )

+ F2(z)× 1

6

5∑
k=0

H2(z)X(z) + F2(z)× 1

6

5∑
k=0

H2(z)X(zωk6 )

In the expression of X̂(z) above, all the terms scaling with ωkM result in aliasing. Hence for zero aliasing,
these terms should be zero. Alias free condition:

1

2
H0(−z)F0(z) +

1

3
F1(z)

2∑
k=1

H1(zωk3 ) +
1

6
F2(z)

5∑
k=1

H2(zωk6 ) = 0 (13)

For alias free distortion function, consider

X̂(z) = X(z)T (z), (14)

where T (z) results in alias free output X̂(z) from X(z). When condition (13) is satisfied, we get

X̂(z) =
1

2
H0(z)F0(z)X(z) +

1

3
H1(z)F1(z)X(z) +

1

6
H2(z)F2(z)X(z) (15)

=

[
1

2
H0(z)F0(z) +

1

3
H1(z)F1(z) +

1

6
H2(z)F2(z)

]
X(z) (16)
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Comparing (14) and (16) we get Alias free distortion function:

T (z) =
1

2
H0(z)F0(z) +

1

3
H1(z)F1(z) +

1

6
H2(z)F2(z) (17)

(b)

H0(z)

H1(z)

H2(z) F2(z)

F1(z)

F0(z)# 2

# 4

# 4

" 2

" 4

" 4

x[n] x0[n]

x1[n]

x2[n] x̂[n]

u0[n]

u1[n]

u2[n]

v0[n]

v1[n]

v2[n]

Figure 5: 3-channel filterbank with decimation rates (2,4,4)

Analysis filters - H0(z), H1(z), H2(z)
Synthesis filters - F0(z), F1(z), F2(z)
From Figure 5,

X0(z) = H0(z)X(z),

X1(z) = H1(z)X(z),

X2(z) = H2(z)X(z). (18)

uk[n] is obtained by downsampling xk[n] where k = 0, 1, 2.
For downsampling by M ,

UM (z) =
1

M

M−1∑
k=0

X0

(
z

1
M ωkM

)
, (19)

where ωkM = e
j2πk
M . After downsampling, we get

U0(z) =
1

2

1∑
k=0

X0

(
z

1
2ωk2

)
,

U1(z) =
1

4

3∑
k=0

X1

(
z

1
4ωk4

)
,

U2(z) =
1

4

3∑
k=0

X2

(
z

1
4ωk4

)
. (20)

vk[n] is obtained by upsampling uk[n] where k = 0, 1, 2.
For upsampling by L,

Vk(z) = Uk(zL) (21)
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After upsampling, we get

V0(z) = U0(z2) =
1

2

1∑
k=0

X0

(
zωk2

)
,

V1(z) = U1(z4) =
1

4

3∑
k=0

X1

(
zωk4

)
,

V2(z) = U2(z4) =
1

4

3∑
k=0

X2

(
zωk4

)
. (22)

At the output, we have

X̂(z) =

2∑
l=0

Fl(z)Vl(z)

= F0(z)V0(z) + F1(z)V1(z) + F2(z)V2(z)

=

(
F0(z)× 1

2

1∑
k=0

X0

(
zωk2

))
+

(
F1(z)× 1

4

3∑
k=0

X1

(
zωk4

))

+

(
F2(z)× 1

4

3∑
k=0

X2

(
zωk4

))
(23)

Using (18) in (23) we get

X̂(z) =

(
F0(z)× 1

2

1∑
k=0

H0

(
zωk2

)
X
(
zωk2

))
+

(
F1(z)× 1

4

3∑
k=0

H1

(
zωk4

)
X
(
zωk4

))

+

(
F2(z)× 1

4

3∑
k=0

H2

(
zωk4

)
X
(
zωk4

))
(24)

We have ω0
M = 1 and the terms that result in aliasing are of the form X(zωkM ), k 6= 0. From (24), the alias

free condition is
1

2
H0(−z)F0(z) +

1

4

3∑
k=1

H1(zωk3 )F1(z) +
1

4

3∑
k=1

H2(zωk4 )F2(z) = 0 (25)

To obtain the alias free distortion function, consider

X̂(z) = X(z)T (z), (26)

where T (z) results in alias free output X̂(z) from X(z). When condition (25) is satisfied, we get

X̂(z) =

[
1

2
F0(z)H0(z) +

1

4
F1(z)H1(z) +

1

4
F2(z)H2(z)

]
X(z) (27)

Therefore, the alias free distortion function is given by,

T (z) =
1

2
F0(z)H0(z) +

1

4
F1(z)H1(z) +

1

4
F2(z)H2(z) (28)
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PROBLEM 5: Let H0(z) = 1 + 2z−1 + 4z−2 + 2z−3 + z−4. The analysis filters are quadrature mirror sym-
metric. Draw an implementation for the pair

[
H0(z) H1(z)

]
in the form of a uniform DFT analysis bank,

explicitly showing the polyphase components, the 2× 2 IDFT box and relevant details. (20 pts.)

SOLUTION:

We have,

H0(z) = 1 + 2z−1 + 4z−2 + 2z−3 + z−4. (29)

Let another analysis filter be H1(z). It is said in the question that the analysis filters are quadrature mirror
symmetric, hence,

H1(z) = H0(−z) (30)

H0(z) can be written in polyphase form, i.e.,

H0(z) = E00(z2) + z−1E01(z2) (31)

Simplifying H0(z), we have,

H0(z) = 1 + 4z−2 + z−4 + z−1(2 + 2z−2) (32)

From equation (31) and (32) we have,

E00(z2) = 1 + 4z−2 + z−4 (33)

E01(z2) = 2(1 + z−2) (34)

From (30) we have,

H1(z) = 1− 2z−1 + 4z−2 − 2z−3 + z−4

= (1 + 4z−2 + z−4) + z−1(−2− 2z−2) (35)

Similarly, the polyphase components of H1(z) are given by,

E10(z2) = 1 + 4z−2 + z−4 (36)

E11(z2) = −2− 2z−2 (37)

Comparing equations (33), (34) with equations (36), (37) respectively we obtain,

E00(z2) = E10(z2) (38)

E01(z2) = −E11(z2) (39)

For simplicity we consider

E00(z2) = E10(z2) = E0(z2)

E01(z2) = −E11(z2) = E1(z2)

where, E0(z2) = 1 + 4z−2 + z−4 and E1(z2) = 2(1 + z−2). Writing up in matrix form, we have[
H0(z)
H1(z)

]
=

[
1 1
1 −1

] [
E0(z2)

z−1E1(z2)

]
(40)

Now, the two point IDFT matrix is given by,
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[
e

−j2π(0)
2 e

−j2π(0)
2

e
−j2π(0)

2 e
−j2π(1)

2

]
=

[
1 1
1 −1

]
= W ∗N (41)

Therefore, we have, [
H0(z)
H1(z)

]
=
[
W ∗N

] [ E0(z2)
z−1E1(z2)

]
(42)

Above can be represented as shown in the Figure 6.

Figure 6: Implementation of the pair
[
H0(z) H1(z)

]
where, E0(z2) = 1 + 4z−2 + z−4 and E1(z2) =

2(1 + z−2)
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PROBLEM 6: Expand the signal s(t) = t3 in the interval [0, 1] using Haar wavelets up to a resolution of
0.25. (10 pts.)

SOLUTION:
We have the signal s(t) = t3 over the interval [0, 1]. We need to represent this signal in terms of the Haar
wavelet basis upto a resolution of 0.25. We know that the scaling function of the Haar basis is given as
follows:

φ(t) =

{
1 0 ≤ t < 1

0 else

The Haar wavelet is given by:

ψ(t) =


1 0 ≤ t < 0.5

−1 0.5 ≤ t < 1

0 else

The Haar wavelet basis comprises of the scaling function and the scaled and shifted versions of the Haar
wavelet namely,

B =
{
φ(t), ψn,k(t)n,k

}
where n, k ∈ Z

where ψn,k(t) = 2n/2ψ(2nt − k). These form an orthonormal basis. Thus, we can represent the signal as
follows:

s(t) = aφ(t) +
∑
n,k

bn,kψn,k(t), where a =< φ(t), s(t) >, bn,k =< ψn,k(t), s(t) >

To obtain the representation for the signal s(t) upto a resolution of 0.25, we need to only consider the
projection of the signal onto the space spanned by φ(t), ψ0,0(t), ψ1,0(t) and ψ1,1(t) as the other signals have
resolution greater than 0.25. We compute the coefficients a, b0,0, b1,0 and b1,1 as follows:

a =

∫ ∞
−∞

φ(t)s(t)dt =

∫ 1

0

t3dt =
t4

4

∣∣∣∣∣
1

0

=
1

4

b0,0 =

∫ ∞
−∞

ψ0,0(t)s(t)dt =

∫ 0.5

0

t3dt−
∫ 1

0.5

t3dt =
t4

4

∣∣∣∣∣
0.5

0

− t4

4

∣∣∣∣∣
1

0.5

= − 7

32

b1,0 =

∫ ∞
−∞

ψ1,0(t)s(t)dt =

∫ 0.25

0

√
2t3dt−

∫ 0.5

0.25

√
2t3dt =

√
2t4

4

∣∣∣∣∣
0.25

0

−
√

2t4

4

∣∣∣∣∣
0.5

0.25

= − 7

256
√

2

b1,1 =

∫ ∞
−∞

ψ1,1(t)s(t)dt =

∫ 0.75

0.5

√
2t3dt−

∫ 1

0.75

√
2t3dt =

√
2t4

4

∣∣∣∣∣
0.75

0.5

−
√

2t4

4

∣∣∣∣∣
1

0.75

= − 55

256
√

2

Thus, the representation of the signal upto a resolution of 0.25 is given as,

sapprox(t) =
1

4
φ(t)− 7

32
ψ0,0(t)− 7

256
√

2
ψ1,0(t)− 55

256
√

2
ψ1,1(t)

=
1

4
φ(t)− 7

32
ψ(t)− 7

256
ψ(2t)− 55

256
ψ(2t− 1)

As the question mentions Haar wavelets, the above answer is the expected answer. If the signal is expanded
using the Haar basis, then partial marks is awarded. The solution using Haar basis is as follows:
As the resolution is 0.25, we consider the basis to be:

B = {φ2,k(t) = 2φ(4t− k)}k where k ∈ Z

These form an orthonormal basis. Thus, we can represent the signal as follows:

s(t) =
∑
k

ckφ2,k(t), where ck =< φ2,k(t), s(t) >
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To obtain the representation for s(t) upto a resolution of 0.25, we need to only consider the projection of
the signal onto the space spanned by φ2,0(t), φ2,1(t), φ2,2(t) and φ2,3(t). We compute the coefficients c0, c1, c2
and c3 as follows:

ck =

∫ ∞
−∞

φ2,k(t)s(t)dt =

∫ (k+1)/4

k/4

2t3dt =
t4

2

∣∣∣∣∣
(k+1)/4

k/4

=
1

512
((k + 1)4 − k4)

⇒ c0 =
1

512
, c1 =

15

512
, c2 =

65

512
, c3 =

175

512
.

Thus, the representation of the signal upto a resolution of 0.25 is given as,

s′approx(t) =
1

512
φ2,0(t) +

15

512
φ2,1(t) +

65

512
φ2,2(t) +

175

512
φ2,3(t)

=
1

256
φ(4t) +

15

256
φ(4t− 1) +

65

256
φ(4t− 2) +

175

256
φ(4t− 3)
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BONUS POINTS: Examine if the function f(t) = t2 is uniformly continuous over (0,∞) (10 pts.)

SOLUTION:

Given metric spaces A and B , a function f : A → B is said to be uniformly continuous if for every ε > 0
there exist δ > 0 such that for every a, b ∈ A, |a − b| < δ =⇒ |f(a) − f(b)| < ε. Consider t1, t2 ∈ (0,∞).
We see that

|f(t1)− f(t2)| =|t21 − t22|
=|(t1 − t2)(t1 + t2)|
<δ|(t1 + t2)| (43)

From equation (43), we see that ε = δ|(t1 + t2)| and this shows the dependency of δ on t1 and ε. Since
t1 ∈ (0,∞), t1 + t2 can be unbounded. Therefore, the function t2 is not uniformly continuous over (0,∞).
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