Indian Institute of Science

Linear and non-linear programming-1
Instructor: Shayan Srinivasa Garani
TA: Prayag Gowgi
Home Work \#2, Spring 2018
Late submission policy: Points scored $=$ Correct points scored $\times e^{-d}, d=$ \# days late
Assigned date: Feb. $20^{\text {th }} 2018$
Due date: Mar. $6^{\text {th }} 2018$ in class

Notation

- $\mathbf{A}, \mathbf{D}, \mathbf{E} \in \Re^{m \times n}$.
- $\bar{x}, \bar{d}, \bar{x}_{0}, \bar{C}, \bar{C}^{\star} \in \Re^{n}$ and $\bar{b} \in \Re^{m}$.
- $\bar{x} \geq 0 \Longrightarrow x_{i} \geq 0$ for all $i=1, \ldots, n$.

Problem 1: Prove that if the optimal value of a linear programming problem (LPP) occurs at more than one vertex of P_{F} (set of all feasible solutions), then it occurs at convex linear combination (clc) of these vertices.
Problem 2: Let \bar{x}_{0} be an optimal solution of the LPP

$$
\begin{aligned}
\operatorname{minimize} & \bar{C}^{\mathrm{T}} \bar{x} \\
\text { subject to } & \mathbf{A} \bar{x}=\bar{b} \\
& \bar{x} \geq 0
\end{aligned}
$$

and let \bar{x}^{\star} be any optimal solution when \bar{C} is replaced by \bar{C}^{\star}. Then prove that

$$
\begin{equation*}
\left(\bar{C}^{\star}-\bar{C}\right)^{\mathrm{T}}\left(\bar{x}^{\star}-\bar{x}_{0}\right) \geq 0 \tag{10pts.}
\end{equation*}
$$

Problem 3: Let $\bar{x} \in P=\{\bar{x} \mid \mathbf{A} \bar{x}=\bar{b}, \mathbf{D} \bar{x} \leq f, \mathbf{E} \bar{x} \leq g\}$ such that $\mathbf{D} \bar{x}=f$ and $\mathbf{E} \bar{x}=g$. Show that \bar{d} is a feasible direction at \bar{x} if and only if $\mathbf{A} \bar{d}=0$ and $\mathbf{D} \bar{d} \leq 0$.

Problem 4: Consider the standard form polyhedron $\{\bar{x} \mid \mathbf{A} \bar{x}=\bar{b}, \bar{x} \geq 0\}$ and assume that the rows of matrix A are linearly independent.
(a) Suppose that two different bases lead to same basic solution, show that the basic solution is degenerate.
(b) Consider a degenerate basic solution. Is it true that it corresponds to two or more distinct bases? Prove or give counterexample.
(c) Suppose that a basic solution is degenerate. Is it true there exists an adjacent basic solution which is degenerate? Prove or give counterexample.

Problem 5: Using simplex method

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x_{1}+x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}+x_{2}+x_{3} \leq 2 \\
& x_{1}+2 x_{2}+3 x_{3} \leq 5 \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 6 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

