Indian Institute of Science

Linear and non-linear programming-1

Instructor: Shayan Srinivasa Garani TA: Prayag Gowgi Home Work #2, Spring 2018

Late submission policy: Points scored = Correct points scored $\times e^{-d}$, d = # days late

Assigned date: Feb. 20th 2018

Due date: Mar. 6th 2018 in class

NOTATION

- $\mathbf{A}, \mathbf{D}, \mathbf{E} \in \Re^{m \times n}$.
- $\overline{x}, \overline{d}, \overline{x}_0, \overline{C}, \overline{C}^{\star} \in \Re^n \text{ and } \overline{b} \in \Re^m.$
- $\overline{x} \ge 0 \implies x_i \ge 0$ for all $i = 1, \dots, n$.

PROBLEM 1: Prove that if the optimal value of a linear programming problem (LPP) occurs at more than one vertex of P_F (set of all feasible solutions), then it occurs at convex linear combination (clc) of these vertices. (10 pts.)

PROBLEM 2: Let \overline{x}_0 be an optimal solution of the LPP

minimize
$$\overline{C}^{\Gamma}\overline{x}$$

subject to $\mathbf{A}\overline{x} = \overline{b}$
 $\overline{x} \ge 0$

and let \overline{x}^* be any optimal solution when \overline{C} is replaced by \overline{C}^* . Then prove that

 $\left(\overline{C}^{\star} - \overline{C}\right)^{\mathrm{T}} \left(\overline{x}^{\star} - \overline{x}_{0}\right) \geq 0.$

(10 pts.)

PROBLEM 3: Let $\overline{x} \in P = {\overline{x} | A\overline{x} = \overline{b}, D\overline{x} \le f, E\overline{x} \le g}$ such that $D\overline{x} = f$ and $E\overline{x} = g$. Show that \overline{d} is a feasible direction at \overline{x} if and only if $A\overline{d} = 0$ and $D\overline{d} \le 0$. (10 pts.)

PROBLEM 4: Consider the standard form polyhedron $\{\overline{x} | \mathbf{A}\overline{x} = \overline{b}, \overline{x} \ge 0\}$ and assume that the rows of matrix **A** are linearly independent.

- (a) Suppose that two different bases lead to same basic solution, show that the basic solution is degenerate.
- (b) Consider a degenerate basic solution. Is it true that it corresponds to two or more distinct bases? Prove or give counterexample.
- (c) Suppose that a basic solution is degenerate. Is it true there exists an adjacent basic solution which is degenerate? Prove or give counterexample.

(10 pts.)

PROBLEM 5: Using simplex method

maximize
$$3x_1 + x_2 + 3x_3$$

subject to $2x_1 + x_2 + x_3 \le 2$
 $x_1 + 2x_2 + 3x_3 \le 5$
 $2x_1 + 2x_2 + x_3 \le 6$
 $x_1, x_2, x_3 \ge 0.$

(10 pts.)