Indian Institute of ScienceE9-207: Basics of Signal ProcessingInstructor: Shayan G. SrinivasaHomework #2 Solutions, Spring 2018Solutions prepared by Chaitanya and AnkurLate submission policy: Points scored = Correct points scored $\times e^{-d}$, d = # days lateAssigned date: Feb. 20th 2018Due date: Mar. 1st 2018 by end of the day

PROBLEM 1:

(a)Let S_1 and S_2 be two vector spaces. Then show that $S_1 \cap S_2$ is also a vector space. (b)If $A \in \mathbb{C}^{n \times n}$ and $u, v \in \mathbb{C}^n$ are non-zero vectors such that Au = 2u and Av = 3v, show that u, v are linearly independent.

Solution:

(a) Consider two vectors x, y such that $x, y \in S_1$ and $x, y \in S_2$. This implies $x, y \in S_1 \cap S_2$. Similarly $\alpha x + \beta y \in S_1$ and $\alpha x + \beta y \in S_2$ for scalars α, β . Therefore, $\alpha x + \beta y \in S_1 \cap S_2$. The zero vector, $0 \in S_1$ and $0 \in S_2$. Therefore, $0 \in S_1 \cap S_2$. Hence, $S_1 \cap S_2$ is a vector space.

(b)Suppose u, v are linearly dependent. Then we can write u = kv for some scalar $k \neq 0$. Then, Au = A(kv) = kAv = 3kv. But Au = 2u. This means 2u = 3kv or $u = \frac{3k}{2}v$.

Now, u = kv and $u = \frac{3k}{2}v$ both hold if only if k = 0. This is a contradiction as $k \neq 0$ as per assumption. Therefore, u and v are linearly independent.

PROBLEM 2:

(a)Let $A \in \mathbb{C}^{m \times m}$ be a matrix acting on vectors in the vector space \mathbb{C}^m . We define a new product between vectors $x, y \in \mathbb{C}^m$ as $(x, y)_A$ as $x^{\dagger}Ay$. Under what conditions is this a valid inner product?

(b)Consider the matrix

$$A = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}$$

For what values of $a \in \mathbb{C}$ is $\sqrt{x \dagger Ax}$ a norm defined on \mathbb{C}^3 ? Note: a^{\dagger} is the transpose conjugate of a. For example

$$v = \begin{pmatrix} 1\\i\\-i \end{pmatrix} \Rightarrow v^{\dagger} = \begin{pmatrix} 1 & -i & i \end{pmatrix}$$

Solution:

(a) To be a valid inner product we need $\langle x, x \rangle_A \ge 0$ i.e., $x^{\dagger}Ax \ge 0$. This should hold for all x. This holds if and only if A is positive definite matrix.

(b) A is positive semi-definite implies $A^{\dagger} = A \Rightarrow a \in \mathbb{R}$. Secondly all its eigen values must be positive. Therefore $\lambda = 1 - a, 1 - a, 1 + 2a$ must be positive. Therefore $a \in (-\frac{1}{2}, 1)$.

PROBLEM 3:

What is the minimum value of x - y - z subject to the constraint $x^2 + y^2 + z^2 = 1$? Solution:

For two vectors u, v we have $|\langle u, v \rangle| \leq ||u|| ||v||$. Fix $u = (x, y, z)^T, v = (1, -1, -1)^T$. Then $||u|| = \sqrt{x^2 + y^2 + z^2}, ||v|| = \sqrt{1^2 + (-1)^2 + (-1)^2}.$ $\therefore |\langle u, v \rangle| = |x - y - z| \leq \sqrt{x^2 + y^2 + z^2} \cdot \sqrt{1^2 + (-1)^2 + (-1)^2} = 1 \cdot \sqrt{3}.$ $\Rightarrow -\sqrt{3} \leq x - y - z \leq \sqrt{3}.$ This implies that the minimum value of x - y - z is $-\sqrt{3}.$

PROBLEM 4:

Consider the functions $\varphi_k(t) = A \operatorname{sinc}(\pi(t-k))$ where k is an integer and $A \in \mathbb{C}$. For integers k, l evaluate

$$\int_R \varphi_k(t) \varphi_l^*(t) dt$$

Conclude that $\varphi(t) \in L^2(\mathbb{R})$ and that $\{\varphi_k : k \in \mathbb{Z}\}$ forms an orthonormal set of functions in $L^2(\mathbb{R}).$

Solution:

Denote

$$\psi_{k,l}(t) = \varphi_k(t)\varphi_l^*(t)dt$$
$$\hat{\psi}_{k,l}(\omega) = \int_R \psi_{k,l}(t)e^{-j\omega t}dt$$

We need to evaluate

$$\hat{\psi}_{k,l}(\omega)|_{\omega=0} = \int_R \varphi_k(t)\varphi_l^*(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\varphi}_k(\omega)\hat{\varphi}_l^*(-\omega)d\omega|_{\omega=0}$$

We know

$$\phi_k(t) = A\operatorname{sinc}(\pi(t-k)) \longleftrightarrow A\operatorname{rect}\left(\frac{\omega}{2\pi}\right) e^{-j\omega k}$$
$$\phi_l^*(t) = A^*\operatorname{sinc}(\pi(t-l)) \longleftrightarrow A^*\operatorname{rect}\left(\frac{\omega}{2\pi}\right) e^{j\omega l}$$

Now,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\varphi}_k(\omega) \hat{\varphi}_l^*(-\omega) d\omega|_{\omega=0}$$
$$= \frac{1}{2\pi} |A|^2 \int_{-\pi}^{\pi} e^{-j\omega(k-l)} d\omega|_{\omega=0}$$
$$= |A|^2 \frac{\sin \pi (k-l)}{\pi (k-l)} = \begin{cases} 0 \text{ for } l \neq k \\ |A|^2 \text{ for } l = k \end{cases}$$

Therefore,

$$\int_{R} \varphi_k(t) \varphi_k^*(t) dt = \int_{R} |\varphi_k(t)|^2 dt = |A|^2 < \infty.$$

 $|A|^2 = 1$ then $\{\varphi_k : k \in \mathbb{Z}\}$ form an orthonormal set of functions.

PROBLEM 5:

(a) A baseband signal s(t) with 50 Hz bandwidth is sampled at a rate Fs. The resultant signal is downsampled by a factor 2 to obtain the discrete samples $\hat{s}(n)$. What is the minimum value of F_s in Hz to reconstruct back the signal s(t) from the samples $\hat{s}(n)$?

(b) Let s(n) be any discrete time signal with energy E_s . The signal is downsampled by 3. What is the evergy of the resultant signal if there is no aliasing after decimation?

Solution:

- (a) $\frac{F_s}{2} \ge 100$ Hz. Therefore, minimum value of $F_s = 200$ Hz (b) Let $X(\omega)$ be the frequency response of the original signal. The frequency response after

downsampling is

$$\hat{X}(z) = \frac{1}{3} \left(X \left(1 \cdot z^{\frac{1}{3}} \right) + X \left(\Omega \cdot z^{\frac{1}{3}} \right) + X \left(\Omega^2 \cdot z^{\frac{1}{3}} \right) \right) \text{ where } \Omega^3 = 1,$$
$$\implies \hat{X}(\omega) = \frac{1}{3} \left(X \left(\frac{\omega}{3} \right) + X \left(\frac{\omega - 2\pi}{3} \right) + X \left(\frac{\omega - 4\pi}{3} \right) \right).$$

Since there is no aliasing, the responses $X\left(\frac{\omega}{3}\right)$, $X\left(\frac{\omega-2\pi}{3}\right)$ and $X\left(\frac{\omega-4\pi}{3}\right)$ do not overlap i.e., $X\left(\frac{\omega}{3}\right)X\left(\frac{\omega-2\pi}{3}\right)X\left(\frac{\omega-4\pi}{2}\right) = 0 \forall \omega$.

Therefore,

$$\int_{0}^{2\pi} \left| \hat{X}(\omega) \right|^{2} d\omega = \frac{1}{3} \int_{0}^{6\pi} \left| \hat{X}(\omega) \right|^{2} d\omega = \frac{1}{27} \int_{0}^{6\pi} \left| X\left(\frac{\omega}{3}\right) \right|^{2} d\omega + \frac{1}{27} \int_{0}^{6\pi} \left| X\left(\frac{\omega - 2\pi}{3}\right) \right|^{2} d\omega + \frac{1}{27} \int_{0}^{6\pi} \left| X\left(\frac{\omega - 4\pi}{3}\right) \right|^{2} d\omega$$
$$= \frac{1}{9} \int_{0}^{2\pi} |X(\omega_{1})|^{2} d\omega_{1} + \frac{1}{9} \int_{-\pi}^{\pi} |X(\omega_{2})|^{2} d\omega_{2} + \frac{1}{9} \int_{-\pi}^{\pi} |X(\omega_{3})|^{2} d\omega_{2}$$
$$= \frac{1}{9} E_{s} + \frac{1}{9} E_{s} + \frac{1}{9} E_{s} = \frac{1}{3} E_{s}.$$

We have substituted $\omega_1 = \frac{\omega}{3}$, $\omega_2 = \frac{\omega - 2\pi}{3}$ and $\omega_3 = \frac{\omega - 4\pi}{3}$ in the above equations.

PROBLEM 6:

(a) A signal x(t) is obtained by convolving signals $x_1(t)$ and $x_2(t)$ with the following characteristics:

$$|X_1(\omega)| = 0 \text{ for } |\omega| > 500\pi,$$

 $|X_2(\omega)| = 0 \text{ for } |\omega| > 250\pi.$

Impulse train sampling is performed on x(t) to get $x_s(t) = \sum_{-\infty}^{\infty} x(nT)\delta(t - nT)$. Specify the range of values of T so that x(t) may be recovered from $x_s(t)$. (4 pts)

(b) The signal $s(t) = \begin{cases} 1 - |t| \text{ for } -1 \le t \le 1 \\ 0 \text{ otherwise.} \end{cases}$ is passed through a system to obtain the out-

put $\hat{s}(t)$. The system has a resonant frequency of $\frac{2}{3}$ Hz and hence allows only frequencies of $\frac{2}{3}$ Hz and its harmonics along with d.c. component. What is the value of $\int_{-2}^{2} |\hat{s}(t)|^2$? (8 pts) Solution:

(a) Convolution in time domain is equivalent to multiplication it the frequency domain.

 $X(\omega) = 0$ for $|\omega| > 250\pi \Rightarrow X(f) = 0$ for |f| > 125 Hz. Sampling frequency should be $f_s \ge 2 \cdot 125$ Hz. That is, the sampling period should be $T < \frac{1}{250}s = 4$ ms.

(b) This is same as sampling in the frequency domain. Here, the frequency response S(f) is multiplied by $\sum_{k=-\infty}^{\infty} \delta\left(f - k_3^2\right)$. Therefore, it results in time-domain signal convolved with its Fourier inverse $\sum_{k=-\infty}^{\infty} e^{-j2\pi t_3^2 k} = \frac{3}{2} \sum_{k=-\infty}^{\infty} \delta\left(t - k_3^2\right)$. Therefore the output signal is

$$\hat{s}(t) = s(t) * \frac{3}{2} \sum_{k=-\infty}^{\infty} \delta\left(t - k\frac{3}{2}\right) = \frac{3}{2} \sum_{k=-\infty}^{\infty} s\left(t - k\frac{3}{2}\right).$$

The input and output signals are shown in the following figure:

From the figure, the energy of $\hat{s}\left(t\right)$ in the interval $\left[-2,2\right]$ is

$$\int_{-2}^{2} |\hat{s}(t)|^{2} dt = 3 \int_{3}^{0.5} |\hat{s}(t)|^{2} dt + 2 \int_{2}^{1} |\hat{s}(t)|^{2} dt$$

$$= 6 \int_{0}^{0.5} |\hat{s}(t)|^{2} dt + 2 \int_{0.5}^{1} |\hat{s}(t)|^{2} dt$$

$$= 6 \int_{0}^{0.5} |\hat{3}(1-t)|^{2} dt + 2 \int_{0.5}^{1} |\hat{s}(t)|^{2} dt$$

$$= \frac{27}{2} \left[-\frac{(1-t)^{3}}{3} \right]_{0}^{0.5} + \frac{9}{16} = \frac{27}{2} \times \left(-\frac{1}{8 \times 3} + \frac{1}{3} \right) + \frac{9}{16} = \frac{63}{16} + \frac{9}{16} = \frac{9}{2}$$

Therefore, $\int_{-2}^{2} |\hat{s}(t)|^2 dt = \frac{18}{4} = 4.5.$