Indian Institute of Science
E9-207: Basics of Signal Processing
Instructor: Shayan G. Srinivasa
Homework \#2 Solutions, Spring 2018
Solutions prepared by Chaitanya and Ankur
Late submission policy: Points scored $=$ Correct points scored $\times e^{-d}, d=\#$ days late
Assigned date: Feb. $20^{\text {th }} 2018$
Due date: Mar. $1^{\text {st }} 2018$ by end of the day

PROBLEM 1:

(a)Let \mathcal{S}_{1} and \mathcal{S}_{2} be two vector spaces. Then show that $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ is also a vector space.
(b)If $\mathrm{A} \in \mathbb{C}^{n \times n}$ and $u, v \in \mathbb{C}^{n}$ are non-zero vectors such that $A u=2 u$ and $A v=3 v$, show that u, v are linearly independent.

Solution:

(a) Consider two vectors x, y such that $x, y \in \mathcal{S}_{1}$ and $x, y \in \mathcal{S}_{2}$. This implies $x, y \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$. Similarly $\alpha x+\beta y \in \mathcal{S}_{1}$ and $\alpha x+\beta y \in \mathcal{S}_{2}$ for scalars α, β. Therefore, $\alpha x+\beta y \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$. The zero vector, $\underline{0} \in \mathcal{S}_{1}$ and $\underline{0} \in \mathcal{S}_{2}$. Therefore, $\underline{0} \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$. Hence, $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ is a vector space.
(b)Suppose u, v are linearly dependent. Then we can write $u=k v$ for some scalar $k \neq 0$. Then, $A u=A(k v)=k A v=3 k v$. But $A u=2 u$. This means $2 u=3 k v$ or $u=\frac{3 k}{2} v$.
Now, $u=k v$ and $u=\frac{3 k}{2} v$ both hold if only if $k=0$. This is a contradiction as $k \neq 0$ as per assumption. Therefore, u and v are linearly independent.

PROBLEM 2:

(a)Let $A \in \mathbb{C}^{m \times m}$ be a matrix acting on vectors in the vector space \mathbb{C}^{m}. We define a new product between vectors $x, y \in \mathbb{C}^{m}$ as $(x, y)_{A}$ as $x^{\dagger} A y$. Under what conditions is this a valid inner product?
(b)Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & a & a \\
a & 1 & a \\
a & a & 1
\end{array}\right)
$$

For what values of $a \in \mathbb{C}$ is $\sqrt{x \dagger A x}$ a norm defined on \mathbb{C}^{3} ?
Note: a^{\dagger} is the transpose conjugate of a. For example

$$
v=\left(\begin{array}{c}
1 \\
i \\
-i
\end{array}\right) \Rightarrow v^{\dagger}=\left(\begin{array}{lll}
1 & -i & i
\end{array}\right)
$$

Solution:

(a) To be a valid inner product we need $\langle x, x\rangle_{A} \geq 0$ i.e., $x^{\dagger} A x \geq 0$. This should hold for all x. This holds if and only if A is positive definite matrix.
(b) A is positive semi-definite implies $A^{\dagger}=A \Rightarrow a \in \mathbb{R}$. Secondly all its eigen values must be positive. Therefore $\lambda=1-a, 1-a, 1+2 a$ must be positive. Therefore $a \in\left(-\frac{1}{2}, 1\right)$.

PROBLEM 3:

What is the minimum value of $x-y-z$ subject to the constraint $x^{2}+y^{2}+z^{2}=1$?

Solution:

For two vectors u, v we have $|\langle u, v\rangle| \leq\|u\|\|v\|$. Fix $u=(x, y, z)^{T}, v=(1,-1,-1)^{T}$. Then $\|u\|=\sqrt{x^{2}+y^{2}+z^{2}},\|v\|=\sqrt{1^{2}+(-1)^{2}+(-1)^{2}}$.
$\therefore|\langle u, v\rangle|=|x-y-z| \leq \sqrt{x^{2}+y^{2}+z^{2}} \cdot \sqrt{1^{2}+(-1)^{2}+(-1)^{2}}=1 \cdot \sqrt{3}$.
$\Rightarrow-\sqrt{3} \leq x-y-z \leq \sqrt{3}$. This implies that the minimum value of $x-y-z$ is $-\sqrt{3}$.

PROBLEM 4:

Consider the functions $\varphi_{k}(t)=A \operatorname{sinc}(\pi(t-k))$ where k is an integer and $A \in \mathbb{C}$.
For integers k, l evaluate

$$
\int_{R} \varphi_{k}(t) \varphi_{l}^{*}(t) d t
$$

Conclude that $\varphi(t) \in L^{2}(\mathbb{R})$ and that $\left\{\varphi_{k}: k \in \mathbb{Z}\right\}$ forms an orthonormal set of functions in $L^{2}(\mathbb{R})$.

Solution:

Denote

$$
\begin{aligned}
\psi_{k, l}(t) & =\varphi_{k}(t) \varphi_{l}^{*}(t) d t \\
\hat{\psi}_{k, l}(\omega) & =\int_{R} \psi_{k, l}(t) e^{-j \omega t} d t
\end{aligned}
$$

We need to evaluate

$$
\left.\hat{\psi}_{k, l}(\omega)\right|_{\omega=0}=\int_{R} \varphi_{k}(t) \varphi_{l}^{*}(t) d t=\left.\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{\varphi}_{k}(\omega) \hat{\varphi}_{l}^{*}(-\omega) d \omega\right|_{\omega=0}
$$

We know

$$
\begin{aligned}
& \phi_{k}(t)=A \operatorname{sinc}(\pi(t-k)) \longleftrightarrow A \operatorname{rect}\left(\frac{\omega}{2 \pi}\right) e^{-j \omega k} \\
& \phi_{l}^{*}(t)=A^{*} \operatorname{sinc}(\pi(t-l)) \longleftrightarrow A^{*} \operatorname{rect}\left(\frac{\omega}{2 \pi}\right) e^{j \omega l}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \left.\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{\varphi}_{k}(\omega) \hat{\varphi}_{l}^{*}(-\omega) d \omega\right|_{\omega=0} \\
& =\left.\frac{1}{2 \pi}|A|^{2} \int_{-\pi}^{\pi} e^{-j \omega(k-l)} d \omega\right|_{\omega=0} \\
& =|A|^{2} \frac{\sin \pi(k-l)}{\pi(k-l)}=\left\{\begin{array}{l}
0 \text { for } l \neq k \\
|A|^{2} \text { for } l=k
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
\int_{R} \varphi_{k}(t) \varphi_{k}^{*}(t) d t=\int_{R}\left|\varphi_{k}(t)\right|^{2} d t=|A|^{2}<\infty
$$

$|A|^{2}=1$ then $\left\{\varphi_{k}: k \in \mathbb{Z}\right\}$ form an orthonormal set of functions.

PROBLEM 5:

(a)A baseband signal $s(t)$ with 50 Hz bandwidth is sampled at a rate $F s$. The resultant signal is downsampled by a factor 2 to obtain the discrete samples $\hat{s}(n)$. What is the minimum value of F_{s} in Hz to reconstruct back the signal $s(t)$ from the samples $\hat{s}(n)$?
(b) Let $s(n)$ be any discrete time signal with energy E_{s}. The signal is downsampled by 3 . What is the evergy of the resultant signal if there is no aliasing after decimation?

Solution:

(a) $\frac{F s}{2} \geq 100 \mathrm{~Hz}$. Therefore, minimum value of $F_{s}=200 \mathrm{~Hz}$
(b) Let $X(\omega)$ be the frequency response of the original signal. The frequency response after
downsampling is

$$
\begin{aligned}
\hat{X}(z) & =\frac{1}{3}\left(X\left(1 \cdot z^{\frac{1}{3}}\right)+X\left(\Omega \cdot z^{\frac{1}{3}}\right)+X\left(\Omega^{2} \cdot z^{\frac{1}{3}}\right)\right) \text { where } \Omega^{3}=1, \\
\Longrightarrow \hat{X}(\omega) & =\frac{1}{3}\left(X\left(\frac{\omega}{3}\right)+X\left(\frac{\omega-2 \pi}{3}\right)+X\left(\frac{\omega-4 \pi}{3}\right)\right) .
\end{aligned}
$$

Since there is no aliasing, the responses $X\left(\frac{\omega}{3}\right), X\left(\frac{\omega-2 \pi}{3}\right)$ and $X\left(\frac{\omega-4 \pi}{3}\right)$ do not overlap i.e., $X\left(\frac{\omega}{3}\right) X\left(\frac{\omega-2 \pi}{3}\right) X\left(\frac{\omega-4 \pi}{2}\right)=0 \forall \omega$.
Therefore,

$$
\begin{aligned}
\int_{0}^{2 \pi}|\hat{X}(\omega)|^{2} d \omega=\frac{1}{3} \int_{0}^{6 \pi}|\hat{X}(\omega)|^{2} d \omega & =\frac{1}{27} \int_{0}^{6 \pi}\left|X\left(\frac{\omega}{3}\right)\right|^{2} d \omega+\frac{1}{27} \int_{0}^{6 \pi}\left|X\left(\frac{\omega-2 \pi}{3}\right)\right|^{2} d \omega+\frac{1}{27} \int_{0}^{6 \pi}\left|X\left(\frac{\omega-4 \pi}{3}\right)\right|^{2} d \omega \\
& =\frac{1}{9} \int_{0}^{2 \pi}\left|X\left(\omega_{1}\right)\right|^{2} d \omega_{1}+\frac{1}{9} \int_{-\pi}^{\pi}\left|X\left(\omega_{2}\right)\right|^{2} d \omega_{2}++\frac{1}{9} \int_{-\pi}^{\pi}\left|X\left(\omega_{3}\right)\right|^{2} d \omega_{2} \\
& =\frac{1}{9} E_{s}+\frac{1}{9} E_{s}+\frac{1}{9} E_{s}=\frac{1}{3} E_{s}
\end{aligned}
$$

We have substituted $\omega_{1}=\frac{\omega}{3}, \omega_{2}=\frac{\omega-2 \pi}{3}$ and $\omega_{3}=\frac{\omega-4 \pi}{3}$ in the above equations.
PROBLEM 6:
(a) A signal $x(t)$ is obtained by convolving signals $x_{1}(t)$ and $x_{2}(t)$ with the following characteristics:

$$
\begin{aligned}
& \left|X_{1}(\omega)\right|=0 \text { for }|\omega|>500 \pi, \\
& \left|X_{2}(\omega)\right|=0 \text { for }|\omega|>250 \pi .
\end{aligned}
$$

Impulse train sampling is performed on $x(t)$ to get $x_{s}(t)=\sum_{-\infty}^{\infty} x(n T) \delta(t-n T)$. Specify the range of values of T so that $x(t)$ may be recovered from $x_{s}(t)$. (4 pts)
(b) The signal $s(t)=\left\{\begin{array}{l}1-|t| \text { for }-1 \leq t \leq 1 \\ 0 \text { otherwise. }\end{array} \quad\right.$ is passed through a system to obtain the output $\hat{s}(t)$. The system has a resonant frequency of $\frac{2}{3} \mathrm{~Hz}$ and hence allows only frequencies of $\frac{2}{3} \mathrm{~Hz}$ and its harmonics along with d.c. component. What is the value of $\int_{-2}^{2}|\hat{s}(t)|^{2} ?(8 \mathrm{pts})$ Solution:
(a) Convolution in time domain is equivalent to multiplication it the frequency domain.
$X(\omega)=0$ for $|\omega|>250 \pi \Rightarrow X(f)=0$ for $|f|>125 \mathrm{~Hz}$. Sampling frequency should be $f_{s} \geq 2 \cdot 125 \mathrm{~Hz}$. That is, the sampling period should be $T<\frac{1}{250} s=4 \mathrm{~ms}$.
(b) This is same as sampling in the frequency domain. Here, the frequency response $S(f)$ is multiplied by $\sum_{k=-\infty}^{\infty} \delta\left(f-k \frac{2}{3}\right)$. Therefore, it results in time-domain signal convolved with its Fourier inverse $\sum_{k=-\infty}^{\infty} e^{-j 2 \pi t \frac{2}{3} k}=\frac{3}{2} \sum_{k=-\infty}^{\infty} \delta\left(t-k \frac{3}{2}\right)$. Therefore the output signal is

$$
\hat{s}(t)=s(t) * \frac{3}{2} \sum_{k=-\infty}^{\infty} \delta\left(t-k \frac{3}{2}\right)=\frac{3}{2} \sum_{k=-\infty}^{\infty} s\left(t-k \frac{3}{2}\right) .
$$

The input and output signals are shown in the following figure:

From the figure, the energy of $\hat{s}(t)$ in the interval $[-2,2]$ is

$$
\begin{aligned}
\int_{-2}^{2}|\hat{s}(t)|^{2} d t & =3 \underbrace{\int_{-0.5}^{0.5}|\hat{s}(t)|^{2} d t}_{3 \text { triangle portions }}+2 \underbrace{\int_{0.5}^{1}|\hat{s}(t)|^{2} d t}_{2 \text { flat portions }} \\
& =6 \int_{0}^{0.5}|\hat{s}(t)|^{2} d t+2 \int_{0.5}^{1}|\hat{s}(t)|^{2} d t \\
& =6 \int_{0}^{0.5}\left|\frac{3}{2}(1-t)\right|^{2} d t+2 \int_{0.5}^{1}\left|\frac{3}{4}\right|^{2} d t \\
& =\frac{27}{2}\left[-\frac{(1-t)^{3}}{3}\right]_{0}^{0.5}+\frac{9}{16}=\frac{27}{2} \times\left(-\frac{1}{8 \times 3}+\frac{1}{3}\right)+\frac{9}{16}=\frac{63}{16}+\frac{9}{16}=\frac{9}{2}
\end{aligned}
$$

Therefore, $\int_{-2}^{2}|\hat{s}(t)|^{2} d t=\frac{18}{4}=4.5$.

