Homework \#2 solutions

Prayag
Linear and non-linear programming-1

March 20, 2018

Problem 1.

Solution. Let x_{1}, \ldots, x_{n} be the set of vertices of the set P_{F} at which the optimal value of the LPP occurs i.e.,

$$
\begin{equation*}
C^{\mathrm{T}} x_{i}=m^{\star} \forall i=1, \ldots, n \tag{1}
\end{equation*}
$$

for some $m^{\star}<\infty$. Define x as a clc of x_{1}, \ldots, x_{n} i.e.,

$$
\begin{equation*}
x=\sum_{i=1}^{n} \alpha_{i} x_{i} . \tag{2}
\end{equation*}
$$

The cost at the point x is given by $C^{\mathrm{T}} x$ as

$$
\begin{aligned}
C^{\mathrm{T}} x & =C^{\mathrm{T}}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} C^{\mathrm{T}} x_{i} \\
& =m^{\star}\left(\sum_{i=1}^{n} \alpha_{i}\right) \\
& =m^{\star}
\end{aligned}
$$

Problem 2.

Solution. Let us consider the LPP

$$
\begin{array}{ll}
\operatorname{minimize} & C^{\mathrm{T}} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

as L1. Since x_{0} is an optimal solution of L1, we write $C^{\mathrm{T}} x_{0} \leq C^{\mathrm{T}} x$ for any $x \in \Re^{\mathrm{n}}$. Hence, we get

$$
\begin{equation*}
C^{\mathrm{T}} x_{0} \leq C^{\mathrm{T}} x^{\star} \tag{3}
\end{equation*}
$$

. Similarly, let us call the LPP

$$
\begin{array}{ll}
\operatorname{minimize} & C^{\star \mathrm{T}} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

as L2. Since, x^{\star} is optimal solution of L2 we write $C^{\star \mathrm{T}} x^{\star} \leq C^{\star \mathrm{T}} x$ for any $x \in \Re^{\mathrm{n}}$. Hence, we write

$$
\begin{equation*}
C^{\star \mathrm{T}} x^{\star} \leq C^{\star \mathrm{T}} x_{0} \tag{4}
\end{equation*}
$$

Adding 3 and 4 , we get $\left(C^{\mathrm{T}}-C^{\star \mathrm{T}}\right)\left(x^{\star}-x_{0}\right) \geq 0$.

Problem 3.

Solution. 1. $A d=0$ and $D d \leq 0 \Longrightarrow d$ is feasible direction. Let $\theta>0$ be a scalar and d be a vector in \Re^{n} space. For the vector d to be the feasible direction, the vector $x+\theta d$ should satisfy the following

$$
\begin{aligned}
A(x+\theta d) & =A x+\theta A d \\
& =b
\end{aligned}
$$

and

$$
\begin{aligned}
D(x+\theta d) & =D x+\theta D d \\
& \leq f-\theta(\delta)^{2} \\
& \leq f
\end{aligned}
$$

for any $\delta \in \Re$. Therefore, vector d is a feasible direction.
2. d is a feasible direction $\Longrightarrow A d=0$ and $D d \leq 0$. Consider the following

$$
\begin{gathered}
A(x+\theta d)=A x+\theta A d \\
b+\theta A d
\end{gathered}
$$

for $(b+\theta A d) \in P$, we need $A d=0$. Similarly,

$$
\begin{aligned}
D(x+\theta d) & =D x+\theta D d \\
& =f+\theta D d
\end{aligned}
$$

for $f+\theta D d \in P$, we need $D d=-(\delta)^{2} \leq 0$ for any $\delta \in \Re$.

Problem 4.

Solution. (a) Let B_{1} and B_{2} be two different bases, let x_{b} be the basic solution. Since B_{1} and B_{2} leads to the same basic solution, we can write

$$
\begin{align*}
& B_{1} x_{b}=b, \tag{5}\\
& B_{2} x_{b}=b . \tag{6}
\end{align*}
$$

Subtracting equations (5) and (6), we get

$$
\begin{equation*}
\left(B_{1}-B_{2}\right) x_{b}=0 \tag{7}
\end{equation*}
$$

If every column of the matrix $\left(B_{1}-B_{2}\right)$ is non zero and x_{b} nondegenerate, the columns of ($B_{1}-B_{2}$) are linearly dependent. Then the corresponding x_{b} can be made zero implying x_{b} has to be degenerate.
(b) Since rows of A are independent, the system $B x_{b}=b$ has a unique solution. Where B is a matrix with linearly independent columns of A. Any degenerate x_{b} corresponds to only one basis and hence the answer is no.
(c) Note that two basic feasible solutions (vertices) are adjacent, if they use $m-1$ basic variables in common to form basis. Consider the following set of constraints

$$
\begin{array}{r}
x_{1}+x_{2}=1 \\
x_{2}+x_{3}=1 .
\end{array}
$$

The rank of matrix A is 2. Therefore, we get three bases $B_{1}=\left\{x_{1}, x_{2}\right\}, B_{2}=\left\{x_{2}, x_{3}\right\}$ and $B_{3}=\left\{x_{1}, x_{3}\right\}$. The basic solution corresponding to B_{1} and B_{2} is $(0,1,0)^{\mathrm{T}}$ and $(1,0,1)^{\mathrm{T}}$ corresponding to B_{3}. We see that the two basic degenerate basic solutions are not adjacent to each other.

Problem 5.

Solution. Transform the given problem from maximization to minimization by multiplying the objective function by -1 . With this transformation, convert the problem into standard form and follow the simplex tableau method.

