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PROBLEM 1:
(a)Let H(z) = 1+az−1

a+z−1 , a ∈ R. Write down the expressions for the Type 1 polyphase components (with
M = 2). What can you say about H(z) for various values of a? (4 points)
(b)Let H(z) = 1

1−2R sin θz−1+R2z−2 with R > 0 and θ ∈ R. Find the Type 1 polyphase components for
M = 2. (4 points)
Solution:
Writing the polyphase decomposition of H(z):

H(z) = E0(z2) + z−1E1(z2)

(a)

H(z) =
1 + az−1

a+ z−1
, a ∈ R

=
(1 + az−1)(a− z−1)

a2 − z−2 =
a(1− z−2)

a2 − z−2 + z−1
a2 − 1

a2 − z−2 .

∴ E0(z) =
a(1− z−1)

a2 − z−1 and E1(z) =
a2 − 1

a2 − z−1 .

This gives the type-I decomposition of H(z).

|H(eiω)| = 1⇒ It is an all pass filter ∀a.

For a = 0, H(z) = z ⇒ It is a non causal filter . For a > 1, H(z) is stable and for a < 1, H(z) is unstable.

(b)

H(z) =
1

1− 2R sin θz−1 +R2z−2
, R > 0, θ ∈ R

=
(1 +R2z−2) + 2R sin θz−1

(1 +R2z−2)2 − 4R2 sin2 θz−2
=

1 +R2z−2

1 + 2R2 cos 2θz−2 +R4z−4
+ z−1

2R sin θ

1 + 2R2 cos 2θz−2 +R4z−4
.

∴ E0(z) =
1 +R2z−1

1 + 2R2 cos 2θz−1 +R4z−2
and E1(z) =

2R sin θ

1 + 2R2 cos 2θz−1 +R4z−2
.

This gives the type-I decomposition of H(z).



PROBLEM 2:
Consider the analysis/synthesis system shown below:

x̂(n)

x(n)

H1(z)

F0(z)

F1(z)

H0(z)

(a) Let the analysis filters be H0(z) = 1 + 3z−1 + 1
3z
−2 + z−3 and H1(z) = H0(−z). Find causal stable

IIR filters F0(z) and F1(z) such that x̂(n) agrees with x(n) except for a possible delay and (non zero) scale
factor.(5 points)
(b) Let the analysis filters be H0(z) = 1 + z−1 + 3z−2 + z−3 + z−4 and H1(z) = H0(−z). Find causal stable
FIR filters F0(z) and F1(z) such that x̂(n) agrees with x(n) except for a possible delay and (non zero) scale
factor. (5 points)
Solution:
From the block diagram, we observe that

X̂(z) =
(
H0(z)F0(z) +H1(z)F1(z)

)
X(z)

Writing the polyphase decomposition of H0(z):

H0(z) = E0(z2) + z−1E1(z2)

H1(z) = H0(−z) = E0(z2)− z−1E1(z2)

⇒ X̂(z)

X(z)
= E0(z2)

(
F0(z) + F1(z)

)
+ z−1E1(z2)

(
F0(z)− F1(z)

)
(a)

H0(z) = 1 + 3z−1 +
1

3
z−2 + z−3

E0(z2) = 1 +
1

3
z−2

z−1E1(z2) = 3z−1 + z−3

⇒ X̂(z)

X(z)
=
(
1 +

1

3
z−2
)(
F0(z) + F1(z)

)
+
(
3z−1 + z−3

)(
F0(z)− F1(z)

)
We can choose F0(z) = F1(z) = 1

2(1+ 1
3 z

−2)
⇒ X̂(z)

X(z) = 1. Note that F0(z) and F1(z) are causal and stable

because the poles are located at ±j 1√
3
(inside the unit circle).

(b)

H0(z) = 1 + z−1 + 3z−2 + z−3 + z−4

E0(z2) = 1 + 3z−2 + z−4

z−1E1(z2) = z−1 + z−3 = z−1(1 + z−2)

⇒ X̂(z)

X(z)
=
(
1 + 3z−2 + z−4

)(
F0(z) + F1(z)

)
+ z−1

(
1 + z−2

)(
F0(z)− F1(z)

)
=
(
(1 + z−2)2 + z−2

)(
F0(z) + F1(z)

)
+ z−1

(
1 + z−2

)(
F0(z)− F1(z)

)
= (1 + z−2)2(F0(z) + F1(z)) + z−2(F0(z) + F1(z)) + z−1

(
1 + z−2

)(
F0(z)− F1(z)

)



We can choose F0(z) + F1(z) = z−1 and F0(z) + F1(z) = −(1 + z−2).

⇒ X̂(z)

X(z)
= z−1(1 + z−2)2 + z−3 − z−1(1 + z−2)2 = z−3.

Therefore, perfect reconstruction is possible with the following causal FIR filters:

F0(z) =
1

2
(−1 + z−1 − z−2);

F1(z) =
1

2
(1 + z−1 + z−2).



PROBLEM 3:
Let H0(z) = 1+2z−1

2 . Find the real coefficient causal FIR filter H1(z) such that the pair (H0(z), H1(z)) is
power complementary. Are these filters also all pass complementary? (6 points)
Solution:
Since H0(z) and H1(z) are power complementary, we have:

|H0(ejω)|2 + |H1(ejω)|2 = K (some constant)

|1/2 + e−jω|2 + |H1(ejω)|2 = K

(1/2 + cosω)2 + sin2 ω + |H1(ejω)|2 = K

1

4
+ 1 + cosω + |H1(ejω)|2 = K

By choosing H1(z) = 1
2 − z−1, we get

|H0(ejω)|2 + |H1(ejω)|2 =
5

4
+

5

4
=

5

2
.

We check for all pass complementarity:

H0(z) +H1(z) =
1

2
+ z−1 +

1

2
− z−1 = 1.

Therefore, (H0(z), H1(z)) are all pass complementary.



PROBLEM 4:
Simplify the following multirate systems shown below as best as you can. Obtain the z-transform of the
output signal in terms of that of the input signal. (3 × 4 = 12 points)

5 2 615x(n) y(n)

(a)

3 32 2z−1
z−1

x(n)

x(n)

y(n)

(b)

6 2 773x(n) y(n)

(c)

11 7 3 332z−8 z28
x(n) y(n)

(d)

Solution:
(a) y(n) = x(n).

5 2 615x(n) y(n)

5 2 2x(n) 33 5 y(n)

3 3x(n) y(n)



(b) y(n) = 0

3 32 2z−1
z−1

x(n) y(n)

x(n)

x(n)

3 2 2 3z−3 z2 z2 z−3
y(n)

3z−1 2 zz 2 3 z−1
y(n)

x(n)

z−1 zz z−1
y(n)

2 3 23

This block produces zeros for all input sequences

(c)Y (z) = 1
2 (X(z) +X(−z)).

y(n)2673x(n) 7

373x(n) 2 7
y(n)

2

3x(n) 2 7
y(n)

23 7

x(n) 7 22 7 y(n)

x(n) 7 2 y(n)7 2

2 2 y(n)x(n)



(d) y(n) = 0

11 7 3 332z−8 z28
x(n) y(n)

11 7 33z−8 z28
x(n) y(n)

2 3

11 7z−8 z28
x(n)

2 11 y(n)

x(n)
11 z−22 z14 7 z28 2 11

y(n)

x(n)
y(n)

11z−2 117 z2 2 z14

x(n)
z−2 711 2 11z15 y(n)

z−2
x(n)

14 11 11z15 y(n)

This block produces all zeros for all inputs



PROBLEM 5:
Prove that decimation by M followed by expansion by L can be interchanged if L and M are relatively
prime. You must prove this result in the time and frequency domain representations. (10 points)
Solution:
(Frequency domain analysis) From Figure 2,

X1 (z) =
1

M

M−1∑
i=0

X
(
z

1
M ej

2πi
M

)
=⇒ Y1 (z) = X1

(
zL
)

=
1

M

M−1∑
i=0

X
(
z
L
M ej

2πi
M

)
. (1)

Similarly,

X2 (z) = X
(
zL
)

Y2 (z) =
1

M

M−1∑
i=0

X2

(
z

1
M ej

2πi
M

)
=

1

M

M−1∑
i=0

X

((
z

1
M ej

2πi
M

)L)

=
1

M

M−1∑
i=0

X
(
z
L
M ej

2πiL
M

)
. (2)

↓ M ↑ L

↑ L ↓ M

x[n]
x1[n]

x2[n]

y1[n]

y2[n]

Figure 2: Comparing the outputs by changing the order of decimator and upsampler.

To prove that Y1 (z) = Y2 (z)∀X (z), it is necessary and sufficient to satisfy the following condition:{
X
(
z
L
M ej

2πiL
M

)
| i = 0, 1, · · · ,M − 1

}
=

{
X
(
z
L
M ej

2πi
M

)
| i = 0, 1, · · · ,M − 1

}
∀X (z)

i.e.,
{
ej

2πiL
M | i = 0, 1, · · · ,M − 1

}
=

{
ej

2πi
M | i = 0, 1, · · · ,M − 1

}
.

Since ej2πk = 1∀k ∈ Z, we have ej
2πiL
M = ej

2π(iL mod M)
M . Hence, the equivalent condition is

{(iL) mod M | i = 0, 1, · · · ,M − 1} = {0, 1, · · · ,M − 1} . (3)

Let 0 ≤ i1 ≤ M − 1 and 0 ≤ i2 ≤ M − 1 such that i1 6= i2. Without loss of generality, consider i1 < i2.
Using the following identity on modulo operation

(a− b) mod M = (a mod M − b mod M) mod M,



we have,

((i1L) mod M − (i2L) mod M) mod M = ((i1 − i2)L) mod M. (4)

Case L and M are relatively prime:

Since 0 < i1 − i2 < M , and gcd (L,M) = 1, ((i1 − i2)L) mod M 6= 0. Therefore from (4),

((i1L) mod M − (i2L) mod M) mod M 6= 0,

=⇒ (i1L) mod M 6= (i2L) mod M.

We have proved that i1 6= i2 =⇒ (i1L) mod M 6= (i2L) mod M ∀i1, i2 ∈ {0, 1, 2 · · · ,M − 1} . Therefore,
when gcd (L,M) = 1, equation (3) holds true.

Case M divides L:

Let L = P ×M, P > 1. Therefore, it is possible to chose i1 = i2 +M . Under this condition,

((i1 − i2)L) mod M = (ML) mod M = 0.

Therefore,

((i1L) mod M − (i2L) mod M) mod M = 0

=⇒ (i1L) mod M = (i2L) mod M.

We have shown that for some choice of i1 6= i2, (i1L) mod M = (i2L) mod M . Hence, the values

{(iL) mod M}M−1i=0 are not distinct. Therefore, when M divides L, equation (3) does not hold true.

Case gcd (M,L) = G > 1:

Let M = G × PM and L = G × PL. We can chose i1 = i2 + G. Under this condition, ej2π
iL
M = e

j2π
iPL
PM .

Therefore,

{
e
j2π

iPL
PM | i = 0, 1, · · · ,M − 1

}
has PM distinct values. Therefore, equation (3) does not hold

true under this condition.

Hence, the equation (3) holds true iff L and M are relatively prime. This proves that M fold decimator and
L fold upsampler blocks can be interchanged iff L and M are relatively prime.

(Time domain analysis) From the definitions of decimator and upsampler,

x1 [n] = x [Mn] .

y1 [n] =

{
x1
[
n
L

]
, n is a multiple of L

0 otherwise,

y1 [n] =

{
x
[
M n

L

]
, n is a multiple of L

0 otherwise.
(5)

Similarly,

x2 [n] =

{
x1
[
n
L

]
, n is a multiple of L

0 otherwise.

y1 [n] = x1 [Mn] ,

y1 [n] =

{
x
[
Mn
L

]
, Mn is a multiple of L

0 otherwise.
(6)



From equations (5) and (6), the outputs are same iff n is a multiple of L when ever Mn is a multiple of L.

Case gcd(L,M) = 1: Trivial in this case that L divides Mn ⇐⇒ L divides n.

Case gcd(L,M) = P 6= 1: Let L = P × Q. In this case L divides Mn when ever Q divides n. Hence
L divides Mn; L divides n.

Therefore, the outputs are same iff L and M are relatively prime.



PROBLEM 6:
Consider the two channel QMF bank shown below where the analysis filters are given by

H0(z)x(n)

H1(z) x̂(n)

F0(z)

F1(z)

2 2

2 2

H0(z) = 2 + 6z−1 + z−2 + 5z−3 + z−5;H1(z) = H0(−z).

Find a set of stable synthesis filters that result in perfect reconstruction. (4 points)
Solution:

Let us label the signals as various junctions.

x(n)

H0(z)

H1(z)

F0(z)

F1(z)

2

2

2

2

x̂(n)

x0(n)

x1(n)

v0(n)

v1(n)

y0(n)

y1(n)

The signals at various nodes of the figure are

X0(z) = H0(z)X(z)

X1(z) = H1(z)X(z)

Y0(z) = X0(z)+X0(−z)
2

Y1(z) = X1(z)+X1(−z)
2

X̂(z) = F0(z)Y0(z) + F1(z)Y1(z) = 1
2 [X0(z)F0(z) +X1(z)F1(z)] + 1

2 [X0(−z)F0(z) +X1(−z)F1(z)]

=⇒ X̂(z) = 1
2X(z) [H0(z)F0(z) +H1(z)F1(z)] + 1

2X(−z) [H0(−z)F0(z) +H1(−z)F1(z)]

To force aliasing to zero,

[H0(−z)F0(z) +H1(−z)F1(z)] = 0 · · · (1)

i.e. F0(z)
F1(z)

= −H1(−z)
H0(−z)

Then we have X̂(z) = 1
2 [H0(z)F0(z) +H1(z)F1(z)]X(z)

or X̂(z) = T (z)X(z) where T (z) = 1
2 [H0(z)F0(z) +H1(z)F1(z)]

For perfect reconstruction T (z) = cz−n0

which implies x̂(n) = cx(n− n0) and

H0(z)F0(z) +H1(z)F1(z) = 2 · · · (2)

Solving (1) and (2) by substituting H0(z) = 2 + 6z−1 + z−2 + 5z−3 + z−5 and H1(z) = H0(−z) we get,



F0(z) =
2 + 6z−1 + z−2 + 5z−3 + z−5

24z−1 + 32z−3 + 14z−5 + 2z−7

F1(z) =
−2 + 6z−1 − z−2 + 5z−3 + z−5

24z−1 + 32z−3 + 14z−5 + 2z−7


