PROBLEM 1: (a)Let $H(z) = \frac{1+az^{-1}}{a+z^{-1}}$, $a \in \mathbb{R}$. Write down the expressions for the Type 1 polyphase components (with M = 2). What can you say about H(z) for various values of a? (4 points) (b)Let $H(z) = \frac{1}{1-2R\sin\theta z^{-1}+R^2z^{-2}}$ with R > 0 and $\theta \in \mathbb{R}$. Find the Type 1 polyphase components for M = 2. (4 points)

Solution:

Writing the polyphase decomposition of H(z):

$$H(z) = E_0(z^2) + z^{-1}E_1(z^2)$$

(a)

$$H(z) = \frac{1+az^{-1}}{a+z^{-1}}, \quad a \in \mathbb{R}$$

= $\frac{(1+az^{-1})(a-z^{-1})}{a^2-z^{-2}} = \frac{a(1-z^{-2})}{a^2-z^{-2}} + z^{-1}\frac{a^2-1}{a^2-z^{-2}}$
 $\therefore E_0(z) = \frac{a(1-z^{-1})}{a^2-z^{-1}} \text{ and } E_1(z) = \frac{a^2-1}{a^2-z^{-1}}.$

This gives the type-I decomposition of H(z).

 $|H(e^{i\omega})| = 1 \Rightarrow$ It is an all pass filter $\forall a$.

For a = 0, $H(z) = z \Rightarrow$ It is a non causal filter. For a > 1, H(z) is stable and for a < 1, H(z) is unstable. (b)

$$H(z) = \frac{1}{1 - 2R\sin\theta z^{-1} + R^2 z^{-2}}, \quad R > 0, \theta \in \mathbb{R}$$

$$= \frac{(1 + R^2 z^{-2}) + 2R\sin\theta z^{-1}}{(1 + R^2 z^{-2})^2 - 4R^2\sin^2\theta z^{-2}} = \frac{1 + R^2 z^{-2}}{1 + 2R^2\cos 2\theta z^{-2} + R^4 z^{-4}} + z^{-1} \frac{2R\sin\theta}{1 + 2R^2\cos 2\theta z^{-2} + R^4 z^{-4}}$$

$$\therefore E_0(z) = \frac{1 + R^2 z^{-1}}{1 + 2R^2\cos 2\theta z^{-1} + R^4 z^{-2}} \text{ and } E_1(z) = \frac{2R\sin\theta}{1 + 2R^2\cos 2\theta z^{-1} + R^4 z^{-2}}.$$

This gives the type-I decomposition of H(z).

PROBLEM 2:

Consider the analysis/synthesis system shown below:

(a) Let the analysis filters be $H_0(z) = 1 + 3z^{-1} + \frac{1}{3}z^{-2} + z^{-3}$ and $H_1(z) = H_0(-z)$. Find causal stable IIR filters $F_0(z)$ and $F_1(z)$ such that $\hat{x}(n)$ agrees with x(n) except for a possible delay and (non zero) scale factor. (5 points)

(b) Let the analysis filters be $H_0(z) = 1 + z^{-1} + 3z^{-2} + z^{-3} + z^{-4}$ and $H_1(z) = H_0(-z)$. Find causal stable FIR filters $F_0(z)$ and $F_1(z)$ such that $\hat{x}(n)$ agrees with x(n) except for a possible delay and (non zero) scale factor. (5 points)

Solution:

From the block diagram, we observe that

$$\hat{X}(z) = (H_0(z)F_0(z) + H_1(z)F_1(z))X(z)$$

Writing the polyphase decomposition of $H_0(z)$:

$$H_0(z) = E_0(z^2) + z^{-1}E_1(z^2)$$

$$H_1(z) = H_0(-z) = E_0(z^2) - z^{-1}E_1(z^2)$$

$$\Rightarrow \frac{\hat{X}(z)}{X(z)} = E_0(z^2) (F_0(z) + F_1(z)) + z^{-1}E_1(z^2) (F_0(z) - F_1(z))$$

(a)

$$H_0(z) = 1 + 3z^{-1} + \frac{1}{3}z^{-2} + z^{-3}$$

$$E_0(z^2) = 1 + \frac{1}{3}z^{-2}$$

$$z^{-1}E_1(z^2) = 3z^{-1} + z^{-3}$$

$$\Rightarrow \frac{\hat{X}(z)}{X(z)} = \left(1 + \frac{1}{3}z^{-2}\right) \left(F_0(z) + F_1(z)\right) + \left(3z^{-1} + z^{-3}\right) \left(F_0(z) - F_1(z)\right)$$

We can choose $F_0(z) = F_1(z) = \frac{1}{2(1+\frac{1}{3}z^{-2})} \Rightarrow \frac{\hat{X}(z)}{X(z)} = 1$. Note that $F_0(z)$ and $F_1(z)$ are causal and stable because the poles are located at $\pm j \frac{1}{\sqrt{3}}$ (inside the unit circle).

$$\begin{split} H_0(z) &= 1 + z^{-1} + 3z^{-2} + z^{-3} + z^{-4} \\ E_0(z^2) &= 1 + 3z^{-2} + z^{-4} \\ z^{-1}E_1(z^2) &= z^{-1} + z^{-3} = z^{-1}(1 + z^{-2}) \\ \Rightarrow \frac{\hat{X}(z)}{X(z)} &= \left(1 + 3z^{-2} + z^{-4}\right) \left(F_0(z) + F_1(z)\right) + z^{-1} \left(1 + z^{-2}\right) \left(F_0(z) - F_1(z)\right) \\ &= \left((1 + z^{-2})^2 + z^{-2}\right) \left(F_0(z) + F_1(z)\right) + z^{-1} \left(1 + z^{-2}\right) \left(F_0(z) - F_1(z)\right) \\ &= (1 + z^{-2})^2 (F_0(z) + F_1(z)) + z^{-2} (F_0(z) + F_1(z)) + z^{-1} \left(1 + z^{-2}\right) \left(F_0(z) - F_1(z)\right) \end{split}$$

We can choose $F_0(z) + F_1(z) = z^{-1}$ and $F_0(z) + F_1(z) = -(1 + z^{-2})$.

$$\Rightarrow \frac{\hat{X}(z)}{X(z)} = z^{-1}(1+z^{-2})^2 + z^{-3} - z^{-1}(1+z^{-2})^2 = z^{-3}.$$

Therefore, perfect reconstruction is possible with the following causal FIR filters:

$$F_0(z) = \frac{1}{2}(-1+z^{-1}-z^{-2});$$

$$F_1(z) = \frac{1}{2}(1+z^{-1}+z^{-2}).$$

PROBLEM 3: Let $H_0(z) = \frac{1+2z^{-1}}{2}$. Find the real coefficient causal FIR filter $H_1(z)$ such that the pair $(H_0(z), H_1(z))$ is power complementary. Are these filters also all pass complementary? (6 points) Solution:

Since $H_0(z)$ and $H_1(z)$ are power complementary, we have:

$$|H_0(e^{j\omega})|^2 + |H_1(e^{j\omega})|^2 = K \text{ (some constant)}$$
$$|1/2 + e^{-j\omega}|^2 + |H_1(e^{j\omega})|^2 = K$$
$$(1/2 + \cos \omega)^2 + \sin^2 \omega + |H_1(e^{j\omega})|^2 = K$$
$$\frac{1}{4} + 1 + \cos \omega + |H_1(e^{j\omega})|^2 = K$$

By choosing $H_1(z) = \frac{1}{2} - z^{-1}$, we get

$$|H_0(e^{j\omega})|^2 + |H_1(e^{j\omega})|^2 = \frac{5}{4} + \frac{5}{4} = \frac{5}{2}$$

We check for all pass complementarity:

$$H_0(z) + H_1(z) = \frac{1}{2} + z^{-1} + \frac{1}{2} - z^{-1} = 1.$$

Therefore, $(H_0(z), H_1(z))$ are all pass complementary.

PROBLEM 4:

Simplify the following multirate systems shown below as best as you can. Obtain the z-transform of the output signal in terms of that of the input signal. $(3 \times 4 = 12 \text{ points})$

Solution:

(a) y(n) = x(n).

(b) y(n) = 0

This block produces zeros for all input sequences

(c) $Y(z) = \frac{1}{2}(X(z) + X(-z)).$

(d) y(n) = 0

This block produces all zeros for all inputs

PROBLEM 5:

Prove that decimation by M followed by expansion by L can be interchanged if L and M are relatively prime. You must prove this result in the time and frequency domain representations. (10 points) **Solution**:

(Frequency domain analysis) From Figure 2,

$$X_{1}(z) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(z^{\frac{1}{M}} e^{j\frac{2\pi i}{M}}\right)$$

$$\implies Y_{1}(z) = X_{1}(z^{L})$$

$$= \frac{1}{M} \sum_{i=0}^{M-1} X\left(z^{\frac{L}{M}} e^{j\frac{2\pi i}{M}}\right).$$
(1)

Similarly,

$$X_{2}(z) = X(z^{L})$$

$$Y_{2}(z) = \frac{1}{M} \sum_{i=0}^{M-1} X_{2} \left(z^{\frac{1}{M}} e^{j\frac{2\pi i}{M}} \right)$$

$$= \frac{1}{M} \sum_{i=0}^{M-1} X \left(\left(z^{\frac{1}{M}} e^{j\frac{2\pi i}{M}} \right)^{L} \right)$$

$$= \frac{1}{M} \sum_{i=0}^{M-1} X \left(z^{\frac{L}{M}} e^{j\frac{2\pi iL}{M}} \right).$$
(2)

Figure 2: Comparing the outputs by changing the order of decimator and upsampler.

To prove that $Y_1(z) = Y_2(z) \forall X(z)$, it is necessary and sufficient to satisfy the following condition:

$$\left\{ X\left(z^{\frac{L}{M}}e^{j\frac{2\pi iL}{M}}\right) \mid i = 0, 1, \cdots, M-1 \right\} = \left\{ X\left(z^{\frac{L}{M}}e^{j\frac{2\pi i}{M}}\right) \mid i = 0, 1, \cdots, M-1 \right\} \quad \forall X(z)$$

$$i.e., \left\{ e^{j\frac{2\pi iL}{M}} \mid i = 0, 1, \cdots, M-1 \right\} = \left\{ e^{j\frac{2\pi i}{M}} \mid i = 0, 1, \cdots, M-1 \right\}.$$

Since $e^{j2\pi k} = 1 \forall k \in \mathbb{Z}$, we have $e^{j\frac{2\pi iL}{M}} = e^{j\frac{2\pi (iL \mod M)}{M}}$. Hence, the equivalent condition is

$$\{(iL) \mod M \mid i = 0, 1, \cdots, M - 1\} = \{0, 1, \cdots, M - 1\}.$$
(3)

Let $0 \le i_1 \le M - 1$ and $0 \le i_2 \le M - 1$ such that $i_1 \ne i_2$. Without loss of generality, consider $i_1 < i_2$. Using the following identity on modulo operation

$$(a-b) \mod M = (a \mod M - b \mod M) \mod M$$
,

we have,

$$((i_1L) \mod M - (i_2L) \mod M) \mod M = ((i_1 - i_2)L) \mod M.$$
 (4)

Case L and M are relatively prime:

Since $0 < i_1 - i_2 < M$, and gcd(L, M) = 1, $((i_1 - i_2)L) \mod M \neq 0$. Therefore from (4),

 $((i_1L) \mod M - (i_2L) \mod M) \mod M \neq 0,$ $\implies (i_1L) \mod M \neq (i_2L) \mod M.$

We have proved that $i_1 \neq i_2 \implies (i_1L) \mod M \neq (i_2L) \mod M \forall i_1, i_2 \in \{0, 1, 2\cdots, M-1\}$. Therefore, when gcd(L, M) = 1, equation (3) holds true.

Case M divides L:

Let $L = P \times M$, P > 1. Therefore, it is possible to chose $i_1 = i_2 + M$. Under this condition,

$$((i_1 - i_2)L) \mod M = (ML) \mod M = 0.$$

Therefore,

$$((i_1L) \mod M - (i_2L) \mod M) \mod M = 0$$

 $\implies (i_1L) \mod M = (i_2L) \mod M.$

We have shown that for some choice of $i_1 \neq i_2$, $(i_1L) \mod M = (i_2L) \mod M$. Hence, the values $\{(iL) \mod M\}_{i=0}^{M-1}$ are not distinct. Therefore, when M divides L, equation (3) does not hold true. Case gcd(M,L) = G > 1:

Let $M = G \times P_M$ and $L = G \times P_L$. We can chose $i_1 = i_2 + G$. Under this condition, $e^{j2\pi \frac{iL}{M}} = e^{j2\pi \frac{iP_L}{P_M}}$. Therefore, $\left\{ e^{j2\pi \frac{iP_L}{P_M}} \mid i = 0, 1, \cdots, M - 1 \right\}$ has P_M distinct values. Therefore, equation (3) does not hold true under this condition.

Hence, the equation (3) holds true iff L and M are relatively prime. This proves that M fold decimator and L fold upsampler blocks can be interchanged iff L and M are relatively prime.

(Time domain analysis) From the definitions of decimator and upsampler,

$$\begin{aligned}
x_1 [n] &= x [Mn]. \\
y_1 [n] &= \begin{cases} x_1 \left[\frac{n}{L}\right], & n \text{ is a multiple of } L \\ 0 & \text{otherwise,} \end{cases} \\
y_1 [n] &= \begin{cases} x \left[M\frac{n}{L}\right], & n \text{ is a multiple of } L \\ 0 & \text{otherwise.} \end{cases}
\end{aligned} \tag{5}$$

Similarly,

$$x_{2}[n] = \begin{cases} x_{1}\left[\frac{n}{L}\right], & n \text{ is a multiple of } L \\ 0 & \text{otherwise.} \end{cases}$$

$$y_{1}[n] = x_{1}[Mn],$$

$$y_{1}[n] = \begin{cases} x\left[\frac{Mn}{L}\right], & Mn \text{ is a multiple of } L \\ 0 & \text{otherwise.} \end{cases}$$
(6)

From equations (5) and (6), the outputs are same iff n is a multiple of L when ever Mn is a multiple of L.

Case gcd(L, M) = 1: Trivial in this case that L divides $Mn \iff L$ divides n.

Case $gcd(L, M) = P \neq 1$: Let $L = P \times Q$. In this case L divides Mn when ever Q divides n. Hence L divides $Mn \neq L$ divides n.

Therefore, the outputs are same iff L and M are relatively prime.

PROBLEM 6:

Consider the two channel QMF bank shown below where the analysis filters are given by

$$H_0(z) = 2 + 6z^{-1} + z^{-2} + 5z^{-3} + z^{-5}; H_1(z) = H_0(-z).$$

Find a set of stable synthesis filters that result in perfect reconstruction. (4 points) **Solution**:

Let us label the signals as various junctions.

The signals at various nodes of the figure are

$$\begin{split} X_0(z) &= H_0(z)X(z) \\ X_1(z) &= H_1(z)X(z) \\ Y_0(z) &= \frac{X_0(z) + X_0(-z)}{2} \\ Y_1(z) &= \frac{X_1(z) + X_1(-z)}{2} \\ \hat{X}(z) &= F_0(z)Y_0(z) + F_1(z)Y_1(z) = \frac{1}{2} \left[X_0(z)F_0(z) + X_1(z)F_1(z) \right] + \frac{1}{2} \left[X_0(-z)F_0(z) + X_1(-z)F_1(z) \right] \\ &\implies \hat{X}(z) &= \frac{1}{2}X(z) \left[H_0(z)F_0(z) + H_1(z)F_1(z) \right] + \frac{1}{2}X(-z) \left[H_0(-z)F_0(z) + H_1(-z)F_1(z) \right] \end{split}$$

To force aliasing to zero,

$$[H_0(-z)F_0(z) + H_1(-z)F_1(z)] = 0 \quad \cdots (1)$$

i.e. $\frac{F_0(z)}{F_1(z)} = -\frac{H_1(-z)}{H_0(-z)}$ Then we have $\hat{X}(z) = \frac{1}{2} [H_0(z)F_0(z) + H_1(z)F_1(z)] X(z)$ or $\hat{X}(z) = T(z)X(z)$ where $T(z) = \frac{1}{2} [H_0(z)F_0(z) + H_1(z)F_1(z)]$ For perfect reconstruction $T(z) = cz^{-n_0}$ which implies $\hat{x}(n) = cx(n - n_0)$ and

$$H_0(z)F_0(z) + H_1(z)F_1(z) = 2 \cdots (2)$$

Solving (1) and (2) by substituting $H_0(z) = 2 + 6z^{-1} + z^{-2} + 5z^{-3} + z^{-5}$ and $H_1(z) = H_0(-z)$ we get,

$$F_0(z) = \frac{2+6z^{-1}+z^{-2}+5z^{-3}+z^{-5}}{24z^{-1}+32z^{-3}+14z^{-5}+2z^{-7}}$$

$$F_1(z) = \frac{-2+6z^{-1}-z^{-2}+5z^{-3}+z^{-5}}{24z^{-1}+z^{-5}+2z^{-7}+z^{-5}+2z^{-7}+z^{-5}+z^$$

$$F_1(z) = \frac{-2 + 6z}{24z^{-1} + 32z^{-3} + 14z^{-5} + 2z^{-7}}$$