## PROBLEM 1:

(a)Let $H(z)=\frac{1+a z^{-1}}{a+z^{-1}}, a \in \mathbb{R}$. Write down the expressions for the Type 1 polyphase components (with $M=2$ ). What can you say about $H(z)$ for various values of $a$ ? (4 points)
(b)Let $H(z)=\frac{1}{1-2 R \sin \theta z^{-1}+R^{2} z^{-2}}$ with $R>0$ and $\theta \in \mathbb{R}$. Find the Type 1 polyphase components for $M=2$. (4 points)

## Solution:

Writing the polyphase decomposition of $H(z)$ :

$$
H(z)=E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right)
$$

(a)

$$
\begin{aligned}
H(z) & =\frac{1+a z^{-1}}{a+z^{-1}}, \quad a \in \mathbb{R} \\
& =\frac{\left(1+a z^{-1}\right)\left(a-z^{-1}\right)}{a^{2}-z^{-2}}=\frac{a\left(1-z^{-2}\right)}{a^{2}-z^{-2}}+z^{-1} \frac{a^{2}-1}{a^{2}-z^{-2}} . \\
\therefore E_{0}(z) & =\frac{a\left(1-z^{-1}\right)}{a^{2}-z^{-1}} \text { and } E_{1}(z)=\frac{a^{2}-1}{a^{2}-z^{-1}} .
\end{aligned}
$$

This gives the type-I decomposition of $H(z)$.

$$
\left|H\left(e^{i \omega}\right)\right|=1 \Rightarrow \text { It is an all pass filter } \forall a
$$

For $a=0, H(z)=z \Rightarrow$ It is a non causal filter. For $a>1, H(z)$ is stable and for $a<1, H(z)$ is unstable.
(b)

$$
\begin{aligned}
H(z) & =\frac{1}{1-2 R \sin \theta z^{-1}+R^{2} z^{-2}}, \quad R>0, \theta \in \mathbb{R} \\
& =\frac{\left(1+R^{2} z^{-2}\right)+2 R \sin \theta z^{-1}}{\left(1+R^{2} z^{-2}\right)^{2}-4 R^{2} \sin ^{2} \theta z^{-2}}=\frac{1+R^{2} z^{-2}}{1+2 R^{2} \cos 2 \theta z^{-2}+R^{4} z^{-4}}+z^{-1} \frac{2 R \sin \theta}{1+2 R^{2} \cos 2 \theta z^{-2}+R^{4} z^{-4}} . \\
\therefore E_{0}(z) & =\frac{1+R^{2} z^{-1}}{1+2 R^{2} \cos 2 \theta z^{-1}+R^{4} z^{-2}} \text { and } E_{1}(z)=\frac{2 R \sin \theta}{1+2 R^{2} \cos 2 \theta z^{-1}+R^{4} z^{-2}} .
\end{aligned}
$$

This gives the type-I decomposition of $H(z)$.

## PROBLEM 2:

Consider the analysis/synthesis system shown below:

(a) Let the analysis filters be $H_{0}(z)=1+3 z^{-1}+\frac{1}{3} z^{-2}+z^{-3}$ and $H_{1}(z)=H_{0}(-z)$. Find causal stable IIR filters $F_{0}(z)$ and $F_{1}(z)$ such that $\hat{x}(n)$ agrees with $x(n)$ except for a possible delay and (non zero) scale factor.(5 points)
(b) Let the analysis filters be $H_{0}(z)=1+z^{-1}+3 z^{-2}+z^{-3}+z^{-4}$ and $H_{1}(z)=H_{0}(-z)$. Find causal stable FIR filters $F_{0}(z)$ and $F_{1}(z)$ such that $\hat{x}(n)$ agrees with $x(n)$ except for a possible delay and (non zero) scale factor. (5 points)

## Solution:

From the block diagram, we observe that

$$
\hat{X}(z)=\left(H_{0}(z) F_{0}(z)+H_{1}(z) F_{1}(z)\right) X(z)
$$

Writing the polyphase decomposition of $H_{0}(z)$ :

$$
\begin{aligned}
H_{0}(z) & =E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right) \\
H_{1}(z) & =H_{0}(-z)=E_{0}\left(z^{2}\right)-z^{-1} E_{1}\left(z^{2}\right) \\
\Rightarrow \frac{\hat{X}(z)}{X(z)} & =E_{0}\left(z^{2}\right)\left(F_{0}(z)+F_{1}(z)\right)+z^{-1} E_{1}\left(z^{2}\right)\left(F_{0}(z)-F_{1}(z)\right)
\end{aligned}
$$

(a)

$$
\begin{aligned}
H_{0}(z) & =1+3 z^{-1}+\frac{1}{3} z^{-2}+z^{-3} \\
E_{0}\left(z^{2}\right) & =1+\frac{1}{3} z^{-2} \\
z^{-1} E_{1}\left(z^{2}\right) & =3 z^{-1}+z^{-3} \\
\Rightarrow \frac{\hat{X}(z)}{X(z)} & =\left(1+\frac{1}{3} z^{-2}\right)\left(F_{0}(z)+F_{1}(z)\right)+\left(3 z^{-1}+z^{-3}\right)\left(F_{0}(z)-F_{1}(z)\right)
\end{aligned}
$$

We can choose $F_{0}(z)=F_{1}(z)=\frac{1}{2\left(1+\frac{1}{3} z^{-2}\right)} \Rightarrow \frac{\hat{X}(z)}{X(z)}=1$. Note that $F_{0}(z)$ and $F_{1}(z)$ are causal and stable because the poles are located at $\pm j \frac{1}{\sqrt{3}}$ (inside the unit circle).
(b)

$$
\begin{aligned}
H_{0}(z) & =1+z^{-1}+3 z^{-2}+z^{-3}+z^{-4} \\
E_{0}\left(z^{2}\right) & =1+3 z^{-2}+z^{-4} \\
z^{-1} E_{1}\left(z^{2}\right) & =z^{-1}+z^{-3}=z^{-1}\left(1+z^{-2}\right) \\
\Rightarrow \frac{\hat{X}(z)}{X(z)} & =\left(1+3 z^{-2}+z^{-4}\right)\left(F_{0}(z)+F_{1}(z)\right)+z^{-1}\left(1+z^{-2}\right)\left(F_{0}(z)-F_{1}(z)\right) \\
& =\left(\left(1+z^{-2}\right)^{2}+z^{-2}\right)\left(F_{0}(z)+F_{1}(z)\right)+z^{-1}\left(1+z^{-2}\right)\left(F_{0}(z)-F_{1}(z)\right) \\
& =\left(1+z^{-2}\right)^{2}\left(F_{0}(z)+F_{1}(z)\right)+z^{-2}\left(F_{0}(z)+F_{1}(z)\right)+z^{-1}\left(1+z^{-2}\right)\left(F_{0}(z)-F_{1}(z)\right)
\end{aligned}
$$

We can choose $F_{0}(z)+F_{1}(z)=z^{-1}$ and $F_{0}(z)+F_{1}(z)=-\left(1+z^{-2}\right)$.

$$
\Rightarrow \frac{\hat{X}(z)}{X(z)}=z^{-1}\left(1+z^{-2}\right)^{2}+z^{-3}-z^{-1}\left(1+z^{-2}\right)^{2}=z^{-3}
$$

Therefore, perfect reconstruction is possible with the following causal FIR filters:

$$
\begin{aligned}
& F_{0}(z)=\frac{1}{2}\left(-1+z^{-1}-z^{-2}\right) \\
& F_{1}(z)=\frac{1}{2}\left(1+z^{-1}+z^{-2}\right)
\end{aligned}
$$

## PROBLEM 3

Let $H_{0}(z)=\frac{1+2 z^{-1}}{2}$. Find the real coefficient causal FIR filter $H_{1}(z)$ such that the pair $\left(H_{0}(z), H_{1}(z)\right)$ is power complementary. Are these filters also all pass complementary? (6 points)

## Solution:

Since $H_{0}(z)$ and $H_{1}(z)$ are power complementary, we have:

$$
\begin{aligned}
&\left|H_{0}\left(e^{j \omega}\right)\right|^{2}+\left|H_{1}\left(e^{j \omega}\right)\right|^{2}=K \text { (some constant) } \\
&\left|1 / 2+e^{-j \omega}\right|^{2}+\left|H_{1}\left(e^{j \omega}\right)\right|^{2}=K \\
&(1 / 2+\cos \omega)^{2}+\sin ^{2} \omega+\left|H_{1}\left(e^{j \omega}\right)\right|^{2}=K \\
& \frac{1}{4}+1+\cos \omega+\left|H_{1}\left(e^{j \omega}\right)\right|^{2}=K
\end{aligned}
$$

By choosing $H_{1}(z)=\frac{1}{2}-z^{-1}$, we get

$$
\left|H_{0}\left(e^{j \omega}\right)\right|^{2}+\left|H_{1}\left(e^{j \omega}\right)\right|^{2}=\frac{5}{4}+\frac{5}{4}=\frac{5}{2} .
$$

We check for all pass complementarity:

$$
H_{0}(z)+H_{1}(z)=\frac{1}{2}+z^{-1}+\frac{1}{2}-z^{-1}=1 .
$$

Therefore, $\left(H_{0}(z), H_{1}(z)\right)$ are all pass complementary.

## PROBLEM 4:

Simplify the following multirate systems shown below as best as you can. Obtain the z-transform of the output signal in terms of that of the input signal. $(3 \times 4=12$ points $)$

(a)

(b)

(c)

(d)

## Solution:

(a) $y(n)=x(n)$.

(b) $y(n)=0$

(c) $Y(z)=\frac{1}{2}(X(z)+X(-z))$.

$$
\begin{aligned}
& x(n) \rightarrow 43 \rightarrow 47 \rightarrow 16 \rightarrow 42 \rightarrow 17 \rightarrow y(n) \\
& x(n) \rightarrow+3 \rightarrow+17 \rightarrow+12 \rightarrow+12 \rightarrow(n) \\
& x(n) \rightarrow 13-13-17-12 \rightarrow+12 \rightarrow+1{ }^{y(n)} \\
& x(n) \rightarrow 17 \rightarrow b^{2} \rightarrow 12 \rightarrow+7(n) \\
& x(n) \rightarrow 47 \rightarrow+7 \rightarrow+2 \rightarrow+2 \rightarrow y(n) \\
& x(n) \rightarrow+12 \rightarrow y(n)
\end{aligned}
$$

(d) $y(n)=0$


## PROBLEM 5:

Prove that decimation by $M$ followed by expansion by $L$ can be interchanged if $L$ and $M$ are relatively prime. You must prove this result in the time and frequency domain representations. (10 points)
Solution:
(Frequency domain analysis) From Figure 2,

$$
\begin{align*}
X_{1}(z) & =\frac{1}{M} \sum_{i=0}^{M-1} X\left(z^{\frac{1}{M}} e^{j \frac{2 \pi i}{M}}\right) \\
\Longrightarrow Y_{1}(z) & =X_{1}\left(z^{L}\right) \\
& =\frac{1}{M} \sum_{i=0}^{M-1} X\left(z^{\frac{L}{M}} e^{j \frac{2 \pi i}{M}}\right) . \tag{1}
\end{align*}
$$

Similarly,

$$
\begin{align*}
X_{2}(z) & =X\left(z^{L}\right) \\
Y_{2}(z) & =\frac{1}{M} \sum_{i=0}^{M-1} X_{2}\left(z^{\frac{1}{M}} e^{j \frac{2 \pi i}{M}}\right) \\
& =\frac{1}{M} \sum_{i=0}^{M-1} X\left(\left(z^{\frac{1}{M}} e^{j \frac{2 \pi i}{M}}\right)^{L}\right) \\
& =\frac{1}{M} \sum_{i=0}^{M-1} X\left(z^{\frac{L}{M}} e^{j \frac{2 \pi i L}{M}}\right) \tag{2}
\end{align*}
$$



Figure 2: Comparing the outputs by changing the order of decimator and upsampler.

To prove that $Y_{1}(z)=Y_{2}(z) \forall X(z)$, it is necessary and sufficient to satisfy the following condition:

$$
\begin{aligned}
\left\{\left.X\left(z^{\frac{L}{M}} e^{j \frac{2 \pi i L}{M}}\right) \right\rvert\, i=0,1, \cdots, M-1\right\} & =\left\{\left.X\left(z^{\frac{L}{M}} e^{j \frac{2 \pi i}{M}}\right) \right\rvert\, i=0,1, \cdots, M-1\right\} \forall X(z) \\
i . e .,\left\{\left.e^{j \frac{2 \pi i L}{M}} \right\rvert\, i=0,1, \cdots, M-1\right\} & =\left\{\left.e^{j \frac{2 \pi i}{M}} \right\rvert\, i=0,1, \cdots, M-1\right\} .
\end{aligned}
$$

Since $e^{j 2 \pi k}=1 \forall k \in \mathbb{Z}$, we have $e^{j \frac{2 \pi i L}{M}}=e^{j \frac{2 \pi(i L \bmod M)}{M}}$. Hence, the equivalent condition is

$$
\begin{equation*}
\{(i L) \bmod M \mid i=0,1, \cdots, M-1\}=\{0,1, \cdots, M-1\} . \tag{3}
\end{equation*}
$$

Let $0 \leq i_{1} \leq M-1$ and $0 \leq i_{2} \leq M-1$ such that $i_{1} \neq i_{2}$. Without loss of generality, consider $i_{1}<i_{2}$. Using the following identity on modulo operation

$$
(a-b) \bmod M=(a \bmod M-b \bmod M) \bmod M,
$$

we have,

$$
\begin{equation*}
\left(\left(i_{1} L\right) \bmod M-\left(i_{2} L\right) \bmod M\right) \bmod M=\left(\left(i_{1}-i_{2}\right) L\right) \bmod M \tag{4}
\end{equation*}
$$

## Case $L$ and $M$ are relatively prime:

Since $0<i_{1}-i_{2}<M$, and $\operatorname{gcd}(L, M)=1,\left(\left(i_{1}-i_{2}\right) L\right) \bmod M \neq 0$. Therefore from (4),

$$
\begin{gathered}
\left(\left(i_{1} L\right) \bmod M-\left(i_{2} L\right) \bmod M\right) \bmod M \neq 0 \\
\Longrightarrow\left(i_{1} L\right) \bmod M \neq\left(i_{2} L\right) \bmod M
\end{gathered}
$$

We have proved that $i_{1} \neq i_{2} \Longrightarrow\left(i_{1} L\right) \bmod M \neq\left(i_{2} L\right) \bmod M \forall i_{1}, i_{2} \in\{0,1,2 \cdots, M-1\}$. Therefore, when $\operatorname{gcd}(L, M)=1$, equation (3) holds true.

Case $M$ divides $L$ :
Let $L=P \times M, P>1$. Therefore, it is possible to chose $i_{1}=i_{2}+M$. Under this condition,

$$
\left(\left(i_{1}-i_{2}\right) L\right) \bmod M=(M L) \bmod M=0
$$

Therefore,

$$
\begin{gathered}
\left(\left(i_{1} L\right) \bmod M-\left(i_{2} L\right) \bmod M\right) \bmod M=0 \\
\Longrightarrow\left(i_{1} L\right) \bmod M=\left(i_{2} L\right) \bmod M
\end{gathered}
$$

We have shown that for some choice of $i_{1} \neq i_{2},\left(i_{1} L\right) \bmod M=\left(i_{2} L\right) \bmod M$. Hence, the values $\{(i L) \bmod M\}_{i=0}^{M-1}$ are not distinct. Therefore, when $M$ divides $L$, equation (3) does not hold true.

Case $\operatorname{gcd}(M, L)=G>1$ :
Let $M=G \times P_{M}$ and $L=G \times P_{L}$. We can chose $i_{1}=i_{2}+G$. Under this condition, $e^{j 2 \pi \frac{i L}{M}}=e^{j 2 \pi \frac{i P_{L}}{P_{M}}}$. Therefore, $\left\{\left.e^{j 2 \pi \frac{i P_{L}}{P_{M}}} \right\rvert\, i=0,1, \cdots, M-1\right\}$ has $P_{M}$ distinct values. Therefore, equation (3) does not hold true under this condition.

Hence, the equation (3) holds true iff $L$ and $M$ are relatively prime. This proves that $M$ fold decimator and $L$ fold upsampler blocks can be interchanged iff $L$ and $M$ are relatively prime.
(Time domain analysis) From the definitions of decimator and upsampler,

$$
\begin{align*}
x_{1}[n] & =x[M n] . \\
y_{1}[n] & = \begin{cases}x_{1}\left[\frac{n}{L}\right], & n \text { is a multiple of } L \\
0 & \text { otherwise },\end{cases} \\
y_{1}[n] & = \begin{cases}x\left[M \frac{n}{L}\right], & n \text { is a multiple of } L \\
0 & \text { otherwise. }\end{cases} \tag{5}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& x_{2}[n]= \begin{cases}x_{1}\left[\frac{n}{L}\right], & n \text { is a multiple of } L \\
0 & \text { otherwise. }\end{cases} \\
& y_{1}[n]
\end{align*}=x_{1}[M n],, ~ \begin{array}{ll}
x\left[\frac{M n}{L}\right], & M n \text { is a multiple of } L \\
0 & \text { otherwise. } \tag{6}
\end{array}
$$

From equations (5) and (6), the outputs are same iff $n$ is a multiple of $L$ when ever $M n$ is a multiple of $L$.
Case $\operatorname{gcd}(L, M)=1$ : Trivial in this case that $L$ divides $M n \Longleftrightarrow L$ divides $n$.
Case $\operatorname{gcd}(L, M)=P \neq 1$ : Let $L=P \times Q$. In this case $L$ divides $M n$ when ever $Q$ divides $n$. Hence $L$ divides $M n \nRightarrow L$ divides $n$.

Therefore, the outputs are same iff $L$ and $M$ are relatively prime.

## PROBLEM 6:

Consider the two channel QMF bank shown below where the analysis filters are given by


$$
H_{0}(z)=2+6 z^{-1}+z^{-2}+5 z^{-3}+z^{-5} ; H_{1}(z)=H_{0}(-z) .
$$

Find a set of stable synthesis filters that result in perfect reconstruction. (4 points)
Solution:
Let us label the signals as various junctions.


The signals at various nodes of the figure are
$X_{0}(z)=H_{0}(z) X(z)$
$X_{1}(z)=H_{1}(z) X(z)$
$Y_{0}(z)=\frac{X_{0}(z)+X_{0}(-z)}{2}$
$Y_{1}(z)=\frac{X_{1}(z)+X_{1}(-z)}{2}$
$\hat{X}(z)=F_{0}(z) Y_{0}(z)+F_{1}(z) Y_{1}(z)=\frac{1}{2}\left[X_{0}(z) F_{0}(z)+X_{1}(z) F_{1}(z)\right]+\frac{1}{2}\left[X_{0}(-z) F_{0}(z)+X_{1}(-z) F_{1}(z)\right]$
$\Longrightarrow \hat{X}(z)=\frac{1}{2} X(z)\left[H_{0}(z) F_{0}(z)+H_{1}(z) F_{1}(z)\right]+\frac{1}{2} X(-z)\left[H_{0}(-z) F_{0}(z)+H_{1}(-z) F_{1}(z)\right]$
To force aliasing to zero,

$$
\left[H_{0}(-z) F_{0}(z)+H_{1}(-z) F_{1}(z)\right]=0 \quad \cdots(1)
$$

i.e. $\frac{F_{0}(z)}{F_{1}(z)}=-\frac{H_{1}(-z)}{H_{0}(-z)}$

Then we have $\hat{X}(z)=\frac{1}{2}\left[H_{0}(z) F_{0}(z)+H_{1}(z) F_{1}(z)\right] X(z)$
or $\hat{X}(z)=T(z) X(z)$ where $T(z)=\frac{1}{2}\left[H_{0}(z) F_{0}(z)+H_{1}(z) F_{1}(z)\right]$
For perfect reconstruction $T(z)=c z^{-n_{0}}$
which implies $\hat{x}(n)=c x\left(n-n_{0}\right)$ and

$$
\begin{equation*}
H_{0}(z) F_{0}(z)+H_{1}(z) F_{1}(z)=2 \tag{2}
\end{equation*}
$$

Solving (1) and (2) by substituting $H_{0}(z)=2+6 z^{-1}+z^{-2}+5 z^{-3}+z^{-5}$ and $H_{1}(z)=H_{0}(-z)$ we get,

$$
\begin{aligned}
& F_{0}(z)=\frac{2+6 z^{-1}+z^{-2}+5 z^{-3}+z^{-5}}{24 z^{-1}+32 z^{-3}+14 z^{-5}+2 z^{-7}} \\
& F_{1}(z)=\frac{-2+6 z^{-1}-z^{-2}+5 z^{-3}+z^{-5}}{24 z^{-1}+32 z^{-3}+14 z^{-5}+2 z^{-7}}
\end{aligned}
$$

