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PROBLEM 1:

(a)Let H(z) = latr“j__ll, a € R. Write down the expressions for the Type 1 polyphase components (with
M = 2). What can you say about H(z) for various values of a? (4 points)

(b)Let H(z) = 172Rsin021,1+R22,2 with R > 0 and # € R. Find the Type 1 polyphase components for
M = 2. (4 points)

Solution:

Writing the polyphase decomposition of H(z):

(a)
1 -1
H(z):i, a€eR
a+z71
1+az"YHa—271 a(l-272) o, a?—1
= a2 — 2 IR R S L
) a(l—z71) a?—1
L EO(Z) = ﬁ a.nd El(z) = W

This gives the type-I decomposition of H(z).
|H(e™)| =1 = It is an all pass filter Va.

For a =0, H(z) = z = It is a non causal filter . For a > 1, H(%) is stable and for a < 1, H(z) is unstable.

1
H(z) = 1—2Rsinfz—1 + R22-2’ R>0,0 R
+ 27 %)+ sz + z- _ sin
1+ R®:?)+2Rsinfz! 1+ R252 L 2R sin
(14 R2272)2 —4R?sin?02=2 14 2R?cos20z=2 4+ Riz* 1+2R?cos20272 + R*z=*%
1+ R?271 2R sin

and E1(2)

T 1+ 2R%2cos202-1 + RAz—2 T 1+ 2R2cos202-' + Riz—2

This gives the type-1 decomposition of H(z).



PROBLEM 2:
Consider the analysis/synthesis system shown below:

z(n) Hy(2) Fy(2)

\ 4

H,(2) F(2)

> i(n)

(a) Let the analysis filters be Ho(z) = 1+ 327! 4+ 272 + 273 and Hi(z) = Ho(—=2). Find causal stable
IIR filters Fy(z) and Fi(z) such that Z(n) agrees with z(n) except for a possible delay and (non zero) scale
factor.(5 points)

(b) Let the analysis filters be Ho(z) = 14271 +3272+ 273 + 274 and Hy(z) = Ho(—2). Find causal stable
FIR filters Fy(z) and Fi(z) such that #(n) agrees with z(n) except for a possible delay and (non zero) scale
factor. (5 points)

Solution:

From the block diagram, we observe that

£(2) = (Ho(2)Fo(2) + i (:)F () X (2)
Writing the polyphase decomposition of Hy(z):

Hy(2) = Eo(2%) + 27 By (2%)
Hy(—2) = Eo(zz) — z*1E1(22)

Hl(Z) =
X(2) _ 2 -1 2 F
= X0e) - Eo(2%)(Fo(2) + Fi(2)) + 27 E1(2%) (Fo(2) — Fi(2))
(a)
Ho(z) =143z 422724273
Fo(z%) =1+ %272
2B (%) =327 4278
X 1
We can choose Fy(z) = Fi(z) = m = ))ggg = 1. Note that Fy(z) and Fj(z) are causal and stable
3

because the poles are located at £ j%(inside the unit circle).

(b)
Ho(z) =142 ' +3272 42734 274
Eo(z%)=1+32"2+27*
() = 4 = (142
= ﬁgz; = (1+32 242 Y (Fo(2) + Fi(2) + 2 (1 + 272) (Fo(z) — Fi(2))

= (142722 +272)(Folz) + Fi(2)) + 2" (1 + 272) (Fo(2) — Fi(2))
(142722 (Fp(2) + Fi(2)) + 2 2(Fo(2) + F1(2)) + 27 (14 272) (Fo(z) — Fi(2))



We can choose Fy(z) + Fi(2) = 27! and Fy(2) + Fi(2) = —(1 + 272).

X(2)

X(2) =2 1422423 27 1+ 2722 =273,

Therefore, perfect reconstruction is possible with the following causal FIR filters:
1 -1 -2
Folz) = 5(-1+271 = 27%)

1
Fi(z) = 5(1 +27 4272,



PROBLEM 3: »
Let Ho(z) = 22— Find the real coefficient causal FIR filter H;(z) such that the pair (Ho(z), H(z)) is
power complementary. Are these filters also all pass complementary? (6 points)
Solution:
Since Hy(z) and Hy(z) are power complementary, we have:
|Ho(e7“)|? 4+ |Hy(e’*)|? = K (some constant)
12+ 2 +H () = K
(1/2 4 cosw)? +sin?w + |H (') = K

1 .
1t 1+cosw+ [H (&) =K

By choosing Hy(z) = 3 — 27!, we get

; , 5 5 5
H Jwy|2 H Jwy|2 — 2 e
[Ho(e) + [Hy(e)? = 2+ 2 = 2
We check for all pass complementarity:
1 4 1 -1

Therefore, (Ho(z), H1(z)) are all pass complementary.



PROBLEM 4:
Simplify the following multirate systems shown below as best as you can. Obtain the z-transform of the
output signal in terms of that of the input signal. (3 x 4 = 12 points)

eln)—{ 1545 )t (46 }—vin)
(a)
T(n)i: [ . . = CZJ(”)
(b)
o(n) —{(13 (17 16 )12 )—(17)— v
()
x(n): s C 8 . . .?J(n)

(d)

Solution:

(a) y(n) = z(n).

o) —{ 13— v




(@Y (2) = 3(X(2) + X(=2)).
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This block produces



PROBLEM 5:

Prove that decimation by M followed by expansion by L can be interchanged if L and M are relatively
prime. You must prove this result in the time and frequency domain representations. (10 points)
Solution:

(Frequency domain analysis) From Figure 2,

1 M-1
Xi(2) = — X (z%ejzly)
M 1=0
= Y1 (Z) = Xl (ZL)
1 M-—1
L S 27
= X (zﬁej M ) (1)
=0
Similarly,
Xo(2) = X(2F
1 M-—1
Ya(2) = — > Xo (zﬁeﬁ/)
M =0
M-1
1 1 27 L
= ZX<(2M63M> >
M =0
1 M-1
L c2mi L
= X(zﬁej hYs ) (2)
=0
z[n] M o] +L uln]
L 3[n] L (]

Figure 2: Comparing the outputs by changing the order of decimator and upsampler.

To prove that Y7 (2) = Y3 (2) VX (2), it is necessary and sufficient to satisfy the following condition:

{X(zﬁej%) li=0,1, - ,M—l}

{x (Hre™) i=01, M=1} VX (2)

ie., {ej% li=0,1, - ,M—1} - {eﬂ'% 1i=0,1, ,M—1}.
Since e/2™F = 1Vk € Z, we have e’ ke T Hence, the equivalent condition is
{(GL) mod M |i=0,1,--- ,M —1} = {0,1,-- , M — 1}. (3)

Let 0 < i3 <M —1and 0 <is < M — 1 such that i1 # i5. Without loss of generality, consider i1 < is.
Using the following identity on modulo operation

(a—b) mod M = (a mod M — b mod M) mod M,



we have,

((i1L) mod M — (ioL) mod M) mod M = ((iy —i2) L) mod M. (4)

Case L and M are relatively prime:
Since 0 < i3 — i < M, and ged (L, M) =1, ((i1 —i2) L) mod M # 0. Therefore from (4),
((#2L) mod M — (i2L) mod M) mod M # 0,
= (i1L) mod M # (i2L) mod M.
We have proved that i1 # i = (i1L) mod M # (i2L) mod M Viy,is € {0,1,2--- ,M — 1} . Therefore,
when ged (L, M) = 1, equation (3) holds true.
Case M divides L:
Let L =P x M, P > 1. Therefore, it is possible to chose i1 = i2 + M. Under this condition,
((i1 —i2) L) mod M = (ML) mod M = 0.

Therefore,

((i2L) mod M — (ieL) mod M) mod M =0
= (i1L) mod M = (i2L) mod M.
We have shown that for some choice of iy # is, (i1L) mod M = (iaL) mod M. Hence, the values
{((L) mod M }i]\igl are not distinct. Therefore, when M divides L, equation (3) does not hold true.

Case ged (M, L) =G > 1:

P ion L

Let M = G x Py, and L = G x P;. We can chose i1 = is + G. Under this condition, e/27% = ¢/** Par
. iP

Therefore, {eﬂmi |i=0,1,--- M — 1} has Py, distinct values. Therefore, equation (3) does not hold

true under this condition.

Hence, the equation (3) holds true iff L and M are relatively prime. This proves that M fold decimator and
L fold upsampler blocks can be interchanged iff L and M are relatively prime.

(Time domain analysis) From the definitions of decimator and upsampler,

x1[n] = a[Mn].
% n is a multiple of L

nlel = { otherwise,

, n is a multiple of L

= 5
au otherwise. 5)
Similarly,
vl = T [%] , n is a multiple of L
2 B 0 otherwise.
yi[ln] = a1 [Mn],

[ "} Mmn is a multiple of L
yiln] =
0 otherwise.



From equations (5) and (6), the outputs are same iff n is a multiple of L when ever Mn is a multiple of L.
Case ged(L, M) = 1: Trivial in this case that L divides Mn <= L divides n.

Case ged(L,M) = P # 1: Let L = P x Q. In this case L divides Mn when ever @ divides n. Hence
L divides Mn = L divides n.

Therefore, the outputs are same iff L and M are relatively prime.



PROBLEM 6:
Consider the two channel QMF bank shown below where the analysis filters are given by

Ho(2) =2+462""+ 272 +52"% + 27° Hy(z) = Ho(—2).

Find a set of stable synthesis filters that result in perfect reconstruction. (4 points)
Solution:
Let us label the signals as various junctions.

Ho(2) xu(n)vo(n)yu(") Fo(2)
Hi(z Fi(z
O (D ¢

The signals at various nodes of the figure are

Xo(z) = Ho(2)X (2)
Xi(z) = Hi(2)X (2)
Yo(z) = w

}/1(2:) — X1(2)+2X1(7z)

X(2) = Fo(2)Yo(2) + F1(2)Ya(2) = § [Xo(2) Fo(2) + X1(2)F1(2)] + 5 [Xo(—2) Fo(2) + X1 (—2)Fi(2)]
= X(2) = 1X(2) [Ho(2)Fo(2) + Hi(2)F1(2)] + 3 X (—2) [Ho(—2)Fo(2) + Hi(—2)Fy(2)]

To force aliasing to zero,

[Ho(=2)Fo(2) + Hi(=2)Fi(2)] =0 ---(1)

Fo(z) _ _ Hi(=2)

ie. Fi(2) Ho(=2)

Then we have X (z) = 1 [Ho(2)Fo(2) + Hi(2)F1(2)] X (2)
or X(z) =T(2)X(z) where T(z) = 3 [Ho(2)Fo(2) + Hi(2)Fi(2)]

For perfect reconstruction T'(z) = ¢z~™0

which implies &(n) = cx(n — ng) and

Ho(2)Fy(2) + Hi(2)Fi(2) =2 ---(2)

Solving (1) and (2) by substituting Ho(z) =2+ 6271 4+ 272 + 5273 + 27° and H;(2) = Ho(—2) we get,



246271 +27 2452734275

T 2421 4+3223 4 1425 + 227

246271 — 27245234270

T 2421 432,38 4+ 14275 4 2,7



