Homework \#3 solutions

Prayag
Linear and non-linear programming-1

April 27, 2018

Problem 1.

Solution. Let us consider the LPP

$$
\begin{array}{ll}
\operatorname{maximize} & 3 p_{1}+6 p_{3} \\
\text { subject to } & 2 p_{1}+3 p_{2}-p_{3} \geq 1 \\
& 3 p_{1}+p_{2}-p_{3} \leq-1 \\
& -p_{1}+4 p_{2}+2 p_{3} \leq 0 \\
& 3 p_{1}+p_{2}-p_{3} \leq-1 \\
& p_{1}-2 p_{2}+p_{3}=0 \\
& p_{1} \leq 0 \\
& p_{2} \geq 0 \\
& p_{3} \text { is free }
\end{array}
$$

Problem 3.

Solution.

(a) False: If the dual basic feasible solution associated with x^{\star} is infeasible, then the optimal cost is $-\infty$.
(b) True: Phase I is always feasible
(c) True: Let p_{i} be the free variable corresponding to the $i^{\text {th }}$ equality constraint. Removal of $i^{\text {th }}$ equality constraint results in absence of p_{i}. The objective function of the dual is

$$
\begin{equation*}
p_{1} b_{1}+\cdots+p_{i-1} b_{i-1}+p_{i+1} b_{i+1}+\cdots+p_{m} b_{m} \tag{1}
\end{equation*}
$$

which is same as the objective function with $p_{i}=0$.
(d) True: follows directly from weak duality theorem.

Problem 4.

Solution.

- $\min _{x \in \Re^{\mathrm{n}}} \max _{i=1, \ldots, m}\left(p_{i} a_{i}^{\mathrm{T}} x-p_{i} b_{i}\right)=p_{i} v$. Using the given data, we get

$$
\begin{align*}
\min _{x \in \mathfrak{R}^{\mathrm{n}}} \max _{i=1, \ldots, m}\left(-p_{i} b_{i}\right) & =p_{i} v \tag{2}\\
\max _{i=1, \ldots, m}\left(-p_{i} b_{i}\right) & =p_{i} v \tag{3}
\end{align*}
$$

But we know that $0 \leq p_{i} \leq 1$ using the upper bound we get

$$
\begin{equation*}
-p^{\mathrm{T}} b \leq v \tag{4}
\end{equation*}
$$

- Write the dual of the given problem and use strong duality theorem to show that the optimal cost is v.

Problem 5.

Solution.

1. Assume that (a) is true. Then we have $p^{\mathrm{T}} A x \geq 0$. But we know that $A x=0$ this results in $P^{\mathrm{T}}=0^{\mathrm{T}}$. Therefore, (b) is false.
2. Assume that (a) is false. Then consider the following maximization problem

$$
\begin{array}{ll}
\operatorname{maximize} & 0^{\mathrm{T}} x \\
\text { subject to } & A x=0 \\
& x \geq 0
\end{array}
$$

which is infeasible. Therefore, from Farka's lemma we know that $\exists p$ such that $p^{T} A>$ 0^{T} 。

Problem 6.

Solution. The proof has been discussed in class. Please refer to class notes.

Problem 7.

Solution.
(a) Let x be optimal point, d be the feasible direction and $\theta>0$. Define $y=x+\theta d$. We know that $c^{\mathrm{T}} \leq c^{\mathrm{T}} y$. This shows $c^{\mathrm{T}} d \geq 0$. Now consider $c^{\mathrm{T}} d \geq 0$. We know that $d=\frac{1}{\theta}(y-x)$. Therefore, $c^{\mathrm{T}} d$ will result in $c^{\mathrm{T}} y \geq c^{\mathrm{T}} x$. Therefore, x is optimal.
(b) Let d be a non-zero feasible direction and let x be unique optimal point. We have $c^{\mathrm{T}} x<c^{\mathrm{T}}(x+\theta d)$ which results in $c^{\mathrm{T}} d>0$. Let $c^{\mathrm{T}} d>0$. Define $d=\frac{1}{\theta}(y-x)$. We see that $c^{\mathrm{T}} \frac{1}{\theta}(y-x)>0$ results in $c^{\mathrm{T}} y>c^{\mathrm{T}} x$.

Problem 8.

Solution. Consider a point $x \in P$. Let $\theta>0$ and let $y=x+\theta d$. For d to be a feasible direction, we need $A y=b$ and $y \geq 0$. It is easy to see that d is feasible iff $A d=0$. Also, $y \geq 0 \Longrightarrow x+\theta d \geq 0$. Now, with $x_{i}=0$ we see that $d_{i} \geq 0$.

Problem 9.

Solution. The set P is characterized by the following conditions:

1. $x_{1}+x_{2}+x_{3}=1$
2. $x \geq 0$

Let $y=x+\theta d$, with $x=(0,0,1)$ we have $y=\left(\theta d_{1}, \theta d_{2}, 1+\theta d_{3}\right)$. For $y \in P$, we require

$$
\begin{equation*}
\left(d_{1}+d_{2}+d_{3}\right)=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
d_{1} & \geq 0 \tag{6}\\
d_{2} & \geq 0 \tag{7}\\
1+\theta d_{3} & \geq 0 \tag{8}
\end{align*}
$$

From (5) and (8), we have

$$
\begin{equation*}
d_{3}=-d_{1}-d_{2} \tag{9}
\end{equation*}
$$

Combining (6), (7) and (9) in (8) we get

$$
\begin{equation*}
\theta \leq \frac{1}{d_{1}+d_{2}} \tag{10}
\end{equation*}
$$

Therefore, feasible direction is $\left(d_{1}, d_{2}, d_{3}\right)$ given by (6),(7), (8) with θ as in (10).
Problem 10.
Solution. The proof has been discussed in class. Please refer to class notes.

