We can revisit the multivariate interpolation problem in a higher-dimensional space. PROBLEM: Given a set of N different points $\begin{cases} \chi_i \in \mathbb{R}^{m_0} \\ \downarrow_{i=1,2,...,N} \end{cases}$ and a Corresponding set of N read not $\begin{cases} d_i \in \mathbb{R} \\ \downarrow_{i=1,...,N} \end{cases}$ find a function $f: \mathbb{R}^N \to \mathbb{R}^1 / \mathbb{R}^N \to \mathbb{R}^N$ The idea of radial basis functions (Stemming from the Gaussian hidden units) we saw in the XOR problem

Suppose
$$F(x) = \sum_{i=1}^{N} w_i \varphi(||x - x_i||)$$

|| || is the L_2 -norm and $\varphi(\cdot)$ is a set of N
arbitrary Smooth' non-linear functions. $(L_2 - norm is a)$
recom for the reson for the readiab symmetry

Let $\varphi_{ji} = \varphi(||x_j - x_i||)$, $j, i = 1, ..., N$
Let $d = [d_1 - ... d_N] T$ (desired)

Let $d = [w_1, ... w_N] T$ (linear weight)

Let us form a matrix egn under the interpolation Constraints. $\begin{bmatrix} \varphi_{11} & \varphi_{12} & \cdots & \varphi_{1N} \\ \vdots & & & & \\ \varphi_{N1} & \varphi_{N2} & & \varphi_{NN} \end{bmatrix} = \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_N \end{bmatrix}$ determine $\psi := \begin{bmatrix} \phi_{ji} \\ \phi_{ji} \end{bmatrix}$ $j_{i} := \begin{bmatrix} \phi_{ji} \\ \phi_{i} \end{bmatrix}$ $j_{i} := \begin{bmatrix} \phi_{i} \\ \phi_{i} \end{bmatrix}$ $\psi := \begin{bmatrix} \phi_{i} \\ \phi_{i} \end{bmatrix}$

Micchelli's Theorem! Let $2 \times i = 1$ be a set of distinct points in Rmo. Then the NXN interpolation matrix Whose j, i the element is $\varphi(||x_j - z_i||)$ is non Singular. Henty of such functions 4(.)

2 xamples: Multignadries: $(r^2+2)^{\frac{1}{2}}$ cso, $r \in \mathbb{R}$ 2) <u>Inverse</u> multiquadrics $p(r) = (r^2 + c^2)^{-1/2}$ C>0; $r \in \mathbb{R}$ 3) Gaussien functions $y(r) = \exp\left(-\frac{r^2}{2\sigma^2}\right) \quad \forall r \in \mathbb{R}$ Inv. multigradius & Gaussians one beatized i.e., $y(r) \rightarrow 0$ Multigradius is unbounded as $r \rightarrow \infty$

Radial Basis Function Networks

Ingredients Consists of mo source nodes, mo is the 1) Imput Layer: dimensionality of the input vector = 2) Hidden layer: Consists of the same # of computational units ally as the size of the training samples N; each unit is mathematically radial basis function $\varphi_{j}(x) = \varphi(||x-x_{j}||); j = 1,2,...,N$ described by Jith point defines the center of the radial basis function
There are 'no' weighte connecting source to hidden nodes

3) Op Layer This is a single computational unit. There is no restriction (typically) on the size of the o/p layer; o/p layer 22 hidden layer size $\varphi_{i}(x) = \varphi(1x - x_{i})$ $= \exp\left(-\frac{1}{2\sigma_{i}^{2}} \left\| \left\| x - \alpha_{j} \right\|^{2}\right) \right) j = 1, 2, \dots, N$

Sketch of the RBF n/w architecture Adjust the weights traditional neuron with This is not like a activation function receptive field as in a MLP over a local

Idea:

Dobtain the hidden layer elements i.e., the Centers in leach of the computational units through a chostering each of the computational units through a construction algorithm. (We do not need every data point to be a center of an RBF unit)

2) Solve for the optimal weight which in the linking the linking the linking the layer and the opplayer

Sketch of the algo I/p layer: The size of the i/p layer is determined by the dim. of the i/p vector x, say mo. Hidden layer: The size of the hidden layer m, is determined by the elusters which is a trade off between performance & Complexity

During an algorithm such as the K-means, obtain the cluster mean { [i] } based on the imputs the cluster mean { [i] } based on the imputs Mese means { [i] } is based on the Gaussian } for all the data points. (4) is based on the Gaussian } 2) Typically, the same of is applied to all Ganssians $\sigma \sim \frac{d_{max}}{\sqrt{|\hat{\mu}|}}$ where $d_{max} := \max_{i,j} ||\hat{\mu}_i - \hat{\mu}_j||$ The above choice of or ensures that individual Gaussians are not too beaky or flat. (Heuristic). (empirical rule) V2K

After we obtain the hidden layer, $\phi(x_i, \mu_i)$ obtain $\phi(x_i) = \begin{bmatrix} \varphi(x_i, \mu_i) \\ \vdots \\ \varphi(x_i, \mu_k) \end{bmatrix}$ over all i = 1 + 0 N From $S(\phi(z_i),d_i)$ N, obtain $\hat{\omega} = [\omega_1...\omega_k]$ by solving $\psi = d$ (If ψ is a rectangular pseudo-inverse pseudo-inverse ψ using ψ is a rectangular pseudo-inverse ψ using adaptive algorithms

Following our earlier motation, $\phi(x) = [\gamma(x_i, \mu_i), \dots, \gamma(x_i, \mu_k)]$ $\phi(x_i) = [\omega_i, \dots, \omega_k]$ $\vdots \qquad \phi(x_i) = [\omega_i, \dots, \omega_k]$ Premultiply (1) by $\phi(Xi)$ on both sides and sum up from i = 1 to N. $\sum_{i=1}^{N} \phi(\mathbf{z}_{i}) \phi^{T}(\mathbf{z}_{i}) = \sum_{i=1}^{N} \phi(\mathbf{z}_{i}) di$

(means chustering is a simple idea for chastering. It is unsupervised on notice Given a set of N observations $\{x_i\}_{i=1}^N$, find a GOAL: Given a set of N observations to K chosters there assigns these observations to K chosters in such a way that the average measure of divisortion is minimized from the choter mean $\{x_i\}_{i=1}^N$, $\{x_i\}_{i=1,...,N}^N$, $\{x_i\}_{$

Except for a Scaling factor of N; where N; is the # data points & duster 'j',

J(C) is a measure of overall cluster various. Now, how do we minimize J(C) Approach: Use the familiar gradient descent approach

Step 1: For a given Code book C, choten variance is minimized w.r.t the assigned set of cluster means $\{\frac{2}{2},\frac{1}{2}\}_{j=1}^{K}$ [i.e., min $\{\frac{2}{2},\frac{1}{2}\}_{j=1}^{K}$ $\{\frac{2}{2},\frac{1}{$ Step2: optimize the encoder as $|x_i - \mu_j|$ $C(i) = |x_j| \le |x_i - \mu_j|$ Steps 1 and 2 until convergence

Recursive Least Squares Algo

Recall that
$$R \underline{w} = \underline{x}$$

Suppose we are estimating w i.e., \widehat{w} as a function of data points in an online manner $R(m) = \sum_{i=1}^{\infty} \phi(\underline{x}_i) \phi^T(\underline{x}_i)$
where $\phi(\underline{x}_i) = [\varphi(\underline{x}_i, \underline{\mu}_i), \dots, \varphi(\underline{x}_i, \underline{\mu}_k)]^T$
 $\varphi(\underline{x}_i, \underline{\mu}_i) = \exp(-\frac{1}{2\sigma_i^2} ||\underline{x}_i - \underline{\mu}_i||^2)$
 $R(x_i, \underline{\mu}_i) = \exp(-\frac{1}{2\sigma_i^2} ||\underline{x}_i - \underline{\mu}_i||^2)$

cross correlation vector is The KXI $r(n) = \sum_{i=1}^{\infty} \phi(x_i) d(i)$ hidden response - desired response at the of FBF m/w W(m) needs to be oftimized in the least square sense C why: $R^{-1} \sim O(K^3)$ It is computationally difficult for large i.e., We need an algo to overcome the inversion issue computational efficiency

$$\underline{\Upsilon}(m) = \sum_{i=1}^{n-1} \phi(\underline{x}_i) d(i) + \phi(\underline{x}_m) d(n)$$

$$\underline{\Upsilon}(n) = \frac{\Upsilon(n-1) + \phi(\underline{x}_m) d(n)}{\Upsilon(n-1) + \phi(\underline{x}_m) d(n)}$$

$$= R(n-1) \frac{\Lambda}{M} (m-1) + \phi(\underline{x}_m) d(n)$$

$$= R(n-1) \frac{\Lambda}{M} (m-1) + \phi(\underline{x}_m) d(n)$$

$$\underline{\Upsilon}(n) = \frac{\Lambda}{M} (m-1) + \phi(\underline{x}_m) \frac{\Lambda}{M} (m-1)$$

$$\underline{\Upsilon}(n) = \frac{\Lambda}{M} (n-1) + \phi(\underline{x}_m) \frac{\Lambda}{M} (n-1)$$

$$\underline$$

$$R(n) = R(n-1) + \oint(n) \oint^{T}(n)$$
Let $Z(m) \triangleq J(m) - \oint^{T}(m-1) \oint(m)$

$$= J(m) - \int^{T}(m-1) \oint(m)$$

$$= J(m) = J(m-1) \oint(m)$$

$$= J(m) \text{ is referred to as 'innovation'}$$

$$= J(m) \text{ is } J(m-1) + J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ in } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{ is } J(m) \text{ is } J(m)$$

$$= J(m) \text{$$

To solve for R appearing in the update rule, we invoke the matrix inversion lemma sider the matrix $A = B^{-1} + CDC^{T}$ $A^{-1} = B - BC(D+C^{T}BC)C^{T}B^{T}$ Consider the matrix For our set up $B^{-1} = R(m-1)$ $A = \mathbb{R}^{(n)}$ $C = \phi^{(n)}$ D = 1

Plugging in /

$$R^{-1}(n) = R^{-1}(n-1) - \frac{1}{R^{-1}(n-1)} \frac{1}{\varphi^{T}(n)} \frac{1}{R^{-1}(n)} \frac{1}{R^{-1}(n)}$$

Let
$$g(n) \stackrel{\triangle}{=} R^{-1}(m) \oint(n)$$

gain vector
$$-g(n) = P(n) \oint(n)$$

$$\frac{\hat{\omega}(n)}{w} = \frac{\hat{\omega}(n-1)}{w} + \frac{-g(n)}{gain} \times \frac{(n)}{mnovation}$$

Summary of the RLS Algo $\{ \phi(i), \phi(i) \}_{i=1}^{N}$, do the following $P(n-1) - P(n-1) = \phi(n) = \phi^{T}(n) P(n-1)$ $g(n) = p(n) \phi(n)$ $\frac{1+\phi^{\dagger}(n) P(n-1) \phi(n)}{1+\phi^{\dagger}(n) P(n-1)} \phi(n)$ $=\frac{1}{\omega(n)}-\frac{1}{\omega(n-1)}\phi(n)$ $=\frac{1}{\omega(n-1)}+\frac{1}{\omega(n)}a(n)$

To initialize,

Set
$$\widehat{\omega}(0) = 0$$

 $\widehat{P}(0) = \widehat{\lambda}^{\prime} \underline{I}$ small +ve constant.

Comparison of RBFs and MLPs Similarities Both are non-linear layered feed forward net works Both are universal approximators

Differences

- RBF in basic form has a single hidden layer, where as, an MLP has more than 1 hidden layer
- The neuronal model is the same in the MLP.

 Jor RBF, each unit can have a different the computations in the hidden layer in a MLP require lead gradients. This is not so in a RBF

3)	For RBF, hidden layer is non-linear, but of layer is
	linear. However, both hidden and o/p layers of MLP are
4)	non-linear The argument of activation for in MLP, involves inner product i.e., p (w x + b). In case of RBF, inner product i.e., p (w x + b). In case of RBF, one looks into the Endidean i.e., p (11 x i - M; 11) one looks into the Endidean i.e.,
5)	Given the same level of m/w complexity, MLP Could provide better accuracy than RBF RBF is faster than MLP.

Kernel Regression Motivation: Can we link RBFs to solve the regression problem? Let us revisit the kernel regression idea built on density estimation esumarion $y_i = f(x_i) + \epsilon_i j \quad i = 1, ..., N$ f(.) is unknownWhat is a reasonable estimate of f(.)?

If we look into the mean of the observations in around a point & i.e., Confine the observations in a small neighborhood around x, we can form an estimate for f(x)f(x) = E(y|x)(conditional mean) $P_{Y}(y|\underline{x}) = \frac{P_{XY}(\underline{x},y)}{-1} = \frac{P_{XY}(\underline{x$ P_X(a) marginal of

 $\frac{\int_{-\infty}^{\infty} y / P_{xy} (z,y)}{\int_{x}^{\infty} (z,y)}$ Joint density Pxy (2e, y) is unknown We may need a non parametric estimate

Typically a kernel defined by K(x) has properties similar to a prob. density function (pd.f) Rernel K(x) is continuous, bounded; and a real function of x symmetric about the origin where it attains a max. value e.g., Gaussian kernel 2) Volume under the kernel is unity (Normalization) $\int_{\mathbb{R}^m} K(x) dx = 1$

Hessuming x_1, x_2, \dots, x_N are independent and identically distributed random vectors the PARZEN ROZENBLATT density estimate of $P_X(x)$ is $P_X(x) = \frac{1}{N + m_o} \sum_{i=1}^{N} K\left(\frac{x - x^i}{x}\right)^{point}$ Controls the size (bandwidth)

PROPERTY (B145) If h = h (N) is a function Such that $\lim_{N \to \infty} \mathbb{E} \left[\hat{P}_{X}(z) \right] = P_{X}(z) \left(\frac{A \text{ Symbholically}}{\text{unbiased}} \right)$

Let us formulate the Parzen-Rosen Hatt density estimate for the joint pdf

Pxy(x,y); assuming (x,y) pairs are inde

Pxy(x,y); assuming (x,y) pairs are inde $\frac{1}{\sum_{x} y(x,y)} = \frac{1}{\sum_{x=1}^{m_{o}+1} \sum_{x=1}^{N} \left(\frac{x-x_{i}}{h} + \frac{y-y_{i}}{h}\right)} \\
= \sum_{x=1}^{m_{o}+1} \sum_{x=1}^{N} \left(\frac{x-x_{i}}{h} + \frac{y-y_{i}}{h}\right) \\
= \sum_{x=1}^{m_{o}+1} \sum_{x=1}^{N} \left(\frac{x-x_{i}}{h} + \frac{y-y_{i}}{h}\right) \\
= \sum_{x=1}^{m_{o}+1} \sum_{x=1}^{m_{o}+1} \left(\frac{x-x_{i}}{h} + \frac{y-y_{i}}{h}\right) \\
= \sum_{x=1}^{m_{o}+1} \sum_{x=1}^{m_{o}+1}$ Consider the numerator of ID which can be simplified as $\int_{\infty}^{\infty} y \hat{p} \left(z, y \right) dy = \frac{1}{N h^{m_{o}+1}} \sum_{i=1}^{N} \left(\frac{z-z_{i}}{h} \right) \left(\frac{y+y_{i}}{h} \right) dy$

We need to compute the integral carefully Consider $\int_{h}^{\infty} y \, K \left(\frac{y - yi}{h} \right) \, dy$ Let z = (y-yi)/h (Change of variable) $y = yi + zh \quad dy = h dz$ $y = yi + zh \quad dy = h dz$ y = h dz y = h dz y = h dz y = h dz y = h dzTerm 1

Jerm 1 evaluates to yi
since $\int K(z) = 1$ (Normalization) Jerm 2 evaluate to 0 sine $\int_{-\infty}^{\infty} 2 k(2) d2 = 0$ $\int_{\infty}^{\infty} y \left(\frac{x}{x}, y \right) dy = \int_{\infty}^{\infty} \int_{\infty}^{\infty} \frac{y}{x} \left(\frac{x - z}{h} \right)$ $\int_{\infty}^{\infty} \frac{y}{h} \left(\frac{x}{x}, y \right) dy = \int_{\infty}^{\infty} \int_{\infty}^{\infty} \frac{y}{h} \left(\frac{x}{h} \right) \left(\frac{x}{h} \right) dy$

 $\therefore \int_{\text{reg}} = E\left(\frac{y|_{x}}{z}\right) = \int_{-\infty}^{\infty} y \hat{p}_{x,y}(\underline{x},\underline{y}) dy$ We have the Kernel reg. estimator Using III and III in $\frac{1}{x}$ $\int_{x=1}^{N} y_i \, k \left(\frac{x-x_i}{h}\right)$ $\int_{x=1}^{N} k \left(\frac{x-x_i}{h}\right)$ Denominator is "not" Zero.

Ponder why?

Compact form

Nadaraya Watson Regression Estimator Let us define the normalized weighting function $K\left(\frac{x-z_i}{h}\right) \qquad \text{weight to}$ $V_{N,i}\left(x\right) = \frac{1}{h} \qquad K\left(\frac{x-z_i}{h}\right) \qquad \text{weight in the light to}$ $V_{N,i}\left(x\right) = \frac{1}{h} \qquad V_{N,i}\left(x\right) = \frac{1}{h} \qquad V_{N,i}\left($ $\int_{i=1}^{N} W_{N,i}(x) = 1$

Regression for $f(x) = \sum_{i=1}^{N} W_{N,i}(x) y_i$ observable weight depuls.

Weighted average of y- observables.

Link to RBF n/w

Since we assume spherical symmetry for the kernel $\frac{L_2 \text{ norm }(\cdot)}{\text{radial symme}}$ in RBFs (Gaussian case) $K\left(\frac{x-x_i}{h}\right) = K\left(\frac{|x-x_i|}{h}\right)$

Define $f_{N}(z,z_{i})=\frac{1}{2} \times \left(\frac{11z-z_{i}}{h}\right)^{j}$ weighting $f_{N}(z_{i},z_{i})=\frac{1}{2} \times \left(\frac{11z-z_{i}}{h}\right)^{j}$

The regression estimate is a weighted sum of 'N' basis functions 4N(2,2i) $y_i = w_i$ for i = 1, 2, ..., N i = 1, 2, ..., N= N (2, Zi) P.B i = 1 h (2, Zi) basis functions weight

NOTE:

- 1) (A) denotes the input/output mapping of a normalized RBF with $0 \le 4N(2,2i) \le 1 + 2,2i$ 2) 4N(2,2i) is interpreted as the probe of an event described by input vector 2 conditioned on 2i
- 3) Density est. can be ill-posed & can be made well-posed by regularization.

Kernel functions can be of Various forms Remed Junotions can be for the state of the

h = 1, following NWRE With $\sum_{y: exp} \left(-\frac{||3-2i||}{20^2} \right)$ freg (2) $\sum_{i=1}^{N} e_{i} \left(-\frac{\left| \left| \frac{x}{2} - \frac{z}{2} \right| \right|^{2}}{2 \sigma^{2}} \right)$ Final form bising
Gaussian Ins.

Basics of constrained oftimization

We are interested in minimizing/maximizing functions Subject to constraints over the variable Example: 1) Optimize the path from point A to point B, subject to traffic conditions over all connecting roads. 2) Optimize the square error in the MLP subject to a sparsity constraint in the network connectivity across layers ets

We have to deal with minimizing functions subject to equality and inequality constraints Formulation

The formul

Assumptions/terminology We assume If and C: is to be smooth and real valued operating on a subset of Rn. 2) f is the objective function and C; EE, Cj EI Let $\Omega = \sum_{x \in \mathbb{Z}} x | C_i(x) = 0, C_i \in E, C_i(x) \neq 0, j \in \mathbb{Z}$ (Overall constraint)

Now then Successfully, min f(x)

Recall! For an optimal solution of (Minimization) $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) > 0$ Positive Semi definite fropertyIf $\nabla^2 f(x^*) \neq 0$ Strict inequality (tve definite)

problems can have The Solutions to opt. (a) lo cal Solution (b) Global Solution s. t- |x/ >2 min x2 Example! (constraint) There are 2 not unique) No Constraint => x =

Consider the problem
Intersecting points The offinization is over the objective choices of a over the objective where the constraints are satisfied

1) A vector x is a local solution to problem (I) if $x^* \in \mathbb{Z}$ and there is a neighborhood $N^* \neq x^*$ such that $f(x) \geq f(x^*) + x \in N \cap \mathbb{Z}$ 2) A vector x^* is a strict local solution if $x^* \in \mathcal{N}$ and there is a neighborhood N of x^* / $f(x) > f(x^*)$ 3) A paint x^{+} is an isolated local solution with $x \neq x^{+}$ if $x^{+} \in \mathbb{N} \cap \mathbb{R}$ and there is a neighborhood \mathbb{N} of x^{+} x^{+} is the only minimizer in $\mathbb{N} \cap \mathbb{R}$ Smoothness

Smoothness of objective fins & Constraints

Can help algorithms to make better choices

during gradient Search towards the Soln.

Clocal soln)

Active In active Constraints

At a feasible point x, the inequality constraints C: (x) = 0 S in active if C: (x) > 0