Reproducing Kernel Hilbert Space
Consider a Mercer kernel
$$k(\underline{x}, \cdot)$$
 where $\underline{x} \in \mathcal{H}$
and \underline{F} be any vector space of all real valued functions
of \underline{x} generated by $K(\underline{x}, \cdot)$
of \underline{x} generated by $K(\underline{x}, \cdot)$
of \underline{x} generated by $K(\underline{x}, \cdot)$
 $f(\cdot) = \sum_{i=1}^{l} a_i k(\underline{x}_{i}, \cdot)$
 $f(\cdot) = \sum_{i=1}^{l} b_i k(\underline{x}_{i}, \cdot)$
 $f(\cdot) = \sum_{i=1}^{l} b_i k(\underline{x}_{i}, \cdot)$
 $f(\cdot) = \sum_{i=1}^{l} b_i k(\underline{x}_{i}, \cdot)$

Consider the bilinear form $\begin{cases} f, g \end{pmatrix} = \sum_{i=1}^{k} \sum_{j=1}^{m} a_i b_j K(\underline{x}_i, \underline{x}_j) \\ i = 1 \ j = 1 \end{cases}$ Defn =1 o at K b Gran matrix/ Kernel matrix $K(\underline{z}_i,\underline{z}_j)$ $\langle K(\underline{x}_{i}, \cdot), K(\underline{x}_{j}, \cdot) \rangle =$ One element of the Gran matrix

We can rewrite
$$\langle f, g \rangle$$
 as
 $\langle f, g \rangle = \sum_{i=1}^{l} a_i \sum_{j=1}^{2} b_j k(\underline{x}_i, \overline{x}_j)$
 $g(\underline{x}_i) (:k(\underline{x}_i, \overline{x}_j))$
 $= \sum_{i=1}^{l} a_i g(\underline{x}_i)$
 $i = 1$
 $i = 1$
 $j =$

Properties
) Symmetry: For all fins f and
$$g \in F$$

) the term $\langle f,g \rangle$ is symmetric
the term $\langle f,g \rangle = \langle g,f \rangle$
i.e., $\langle f,g \rangle = \langle g,f \rangle$
2) Scaling and distribution
For any pair of constants c and d and any set of
functions f,g and $h \in F$
 $\langle (cf + dg), h \rangle = c \langle f,h \rangle + d \langle g,h \rangle$

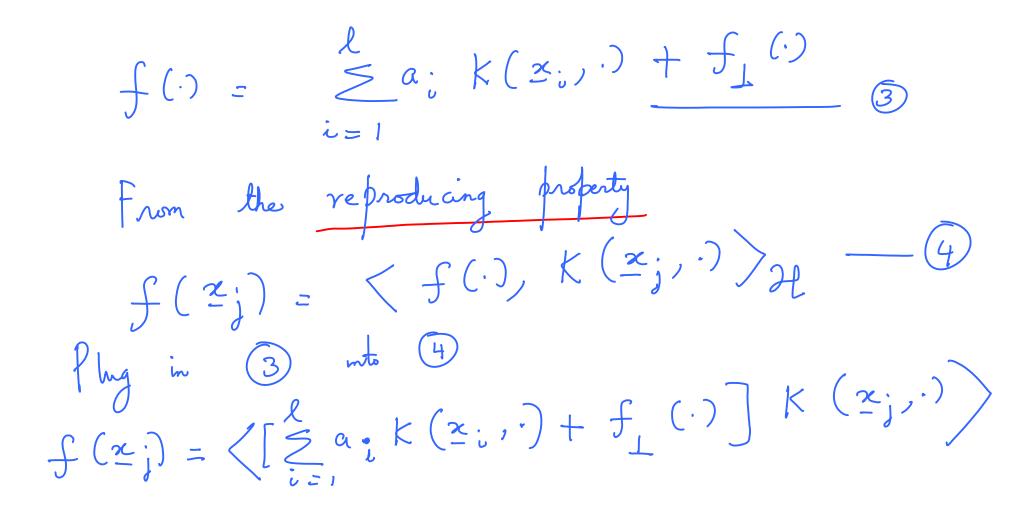
Squared norm 3) For any real valued for f E F $\|f\|^{2} = \langle f, f \rangle$ $= a^{T} K a$ non negative de finite ||f||² 7,0

4) Reproducing Kernel property Suppose $g(.) = K(\underline{x}, .)$ $\langle f, k(\underline{z}, \cdot) \rangle = \underbrace{\sum_{i=1}^{k} a_i k(\underline{z}, \underline{z}_i)}_{k(\underline{z}, \underline{z}_i)} \underbrace{(: \text{ symmetry})}_{k(\underline{z}, \underline{z}_i)} \\ = \underbrace{\sum_{i=1}^{k} a_i k(\underline{z}_i, \underline{z})}_{i=1} = k(\underline{z}_i, \underline{z}) \\ = \underbrace{f(\underline{z})}_{i=1} \underbrace{(k(\underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}_i)} \\ = \underbrace{f(\underline{z})}_{k(\underline{z}, \underline{z}_i)} \underbrace{(k(\underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}_i)} \underbrace{(k(\underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}_i)} \\ = \underbrace{f(\underline{z})}_{k(\underline{z}, \underline{z}_i)} \underbrace{(k(\underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}_i)} \underbrace{(k(\underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}_i)} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}_i)} \\ = \underbrace{f(\underline{z})}_{k(\underline{z}, \underline{z}_i)} \underbrace{(k(\underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}_i)} \underbrace{(k(\underline{z}, \underline{z}, \underline{z})}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z})}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}))}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z})}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z})}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}, \underline{z}, \underline{z})}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}, \underline{z})}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}, \underline{z}, \underline{z})}_{k(\underline{z}, \underline{z}, \underline{z})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}, \underline{z}, \underline{z}, \underline{z})})} \underbrace{(k(\underline{z}, \underline{z}, \underline{z}, \underline{z},$

) For every $\underline{x}_i \in \mathcal{H}$, $K(\underline{x}, \underline{x}_i)$ as a function of z E F Satisfies reproducing property Mercer kernel _____ Reproducing kernel Keproducing kernel _____ Reproducing kernel Space ______ Hilbert space

Representer Theorem Any function defined in a RKHS can be represented as a linear combination of Mercer kernel Theorem : functions. Define a space H to represent RKHS induced by a Mercer kennel $K(\underline{x}, \cdot)$. Given any real valued for $f(\cdot) \in \mathcal{H}$, we could decompose $f(\cdot)$ into 2 components lying in \mathcal{H} . Proof !

The first component
$$f_{11}(\cdot)$$
 is contained in
the span of the kernel fins $K(\underline{x}_{1}, \cdot), K(\underline{x}_{2}, \cdot) \cdots$
 $f_{11}(\cdot) = \sum_{i=1}^{2} a_{i} K(\underline{x}_{i}, \cdot) \qquad (1)$
 $i = 1$
The second component is orthogonal to the span
of the kernelfis; $f_{1}(\cdot)$
 $f(\cdot) = f_{11}(\cdot) + f_{1}(\cdot) \qquad (2)$



 $f(\underline{z}_{j}) = \left\langle \begin{array}{c} \underbrace{k}_{i=1} \left(\underline{z}_{i}, \cdot \right) \right\rangle + \left\langle f_{1}(\cdot) \right\rangle +$ $\begin{array}{c} \begin{array}{c} & (-; \ k (\underline{x}_{i}, \underline{z}_{j}) \\ & -(k (\underline{x}_{i}, \cdot), k (\underline{z}_{j}, \cdot)) \end{array} \\ & \\ \end{array} \\ \begin{array}{c} & \text{Mercer Kernel functions} \end{array} \end{array}$

Proof: Step1: Let f_{\perp} denote the orthogonal complement to the span of the kernel fins SK(2i, j)Now, every fin can be expressed as a Kernel i=1Robansion on the training + f_{\perp} $\mathcal{L}\left(\left\|f\right\|_{\mathcal{H}}\right) = \mathcal{L}\left(\left\|\sum_{i=1}^{\ell}a_{i} \times (z_{i}, \cdot) + f_{\perp}(\cdot)\right\|_{\mathcal{H}}\right)$

Introduce $\widetilde{\mathcal{L}}\left(\left\|f\right\|_{\mathcal{H}}^{2}\right) = \mathcal{L}\left(\left\|f\right\|_{\mathcal{H}}\right)$ $\tilde{n}\left(\left\|f\right\|_{\mathcal{H}}^{2}\right) = \tilde{n}\left(\left\|\sum_{i=1}^{k} k(x_{i}, \cdot) + f_{1}(\cdot)\right\|_{\mathcal{H}}^{2}\right)$

 $\frac{Step 2}{\tilde{\Lambda}} : \qquad Apply \qquad Py \text{ the grows theorem} \\ \tilde{\Lambda} \left(\left\| f \right\|_{\mathcal{H}}^2 \right) = \tilde{\Lambda} \left(\left\| f \right\|_{\tilde{\tau}=1}^2 \times \left(\left\| f \right\|$ Set $f_1(\cdot) = 0$ for $\mathcal{F} = \mathcal{N}\left(\left\| \underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\underset{i=1}{\overset{k}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi}$

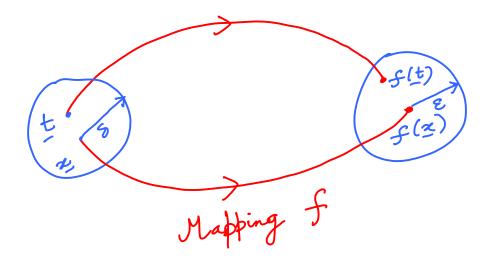
Steps: In light of monotonicity $\Omega\left(\left\|f\right\|_{\mathcal{H}}\right) = \Omega\left(\left\|\sum_{i=1}^{\ell}a_{i}k\left(\mathbf{x}_{i},\cdot\right)\right\|\right)$ For fixed a; ER, the representer theorem is also a minimizer of the regularizing fr -2 (115112e) provided monotonicity is satisfied!

MOTIVATION TO REGULARIZATION THEORY

Learning is a sort of multi-D mapping(f), and can
be viewed as a problem of hypersurface reconstruction
given a set of sparse points
Now, given X (domain) and Y (range) that are
Now, given X (domain) and Y (range) that are
metric spaces, related by a fixed but enknown mapping
$$f: X \rightarrow Y$$

The problem of reconstructing f is well-posed if
it satisfies the following:

a)
$$\frac{2}{2}xistence}$$
: for every input vector $x \in X$, $\exists a -J = f(x)$, $\exists f(x) = f(x)$, $\exists f(x) = f(x)$ iffor any pair of input vectors x , $t \in X$
b) $\frac{1}{2}$ Uniqueness: for any pair of input vectors x , $t \in X$
 $f(x) = f(x)$ iffor $x = t$
c) $\frac{1}{2}$ Continuity: for any $\varepsilon > 0$, $\exists S = S(\varepsilon)/2$
 $d(x,t) < S = d(f(x), f(t)) < \varepsilon$



How can one make an ill-posed problem, well-posed? (Jikhonov) Regularization SOLN :

Consider the following problem $\mathbf{z}_{i} \in \mathbb{R}^{m_{o}}$ $\dot{\lambda} = 1, \dots, N$ Imput signal : i = 1, ..., N $d_{i} \in \mathcal{R}$ Desired signal : $\{z_{\underline{x}}, d_i\}_{\overline{z}=1}$ F (<u>~</u>) Let the approximating function be $\frac{1}{2}\sum_{i=1}^{2} \left(d_i - F(x_i)\right)^2$ − { 5 (F) = CApproximation error)

Introduce the regularization term that
depends on the geometry of the problem
(Reg)
E_c (F) =
$$\frac{1}{2} || DF ||^2$$

Linear differential
operator D
(hoice of D' is problem dependent]
||.|| is the norm over which the function space belongs
to.

 $\mathcal{E}(F) = \mathcal{E}_{s}(F) + \lambda \mathcal{E}_{c}(F)$ $= \frac{1}{2} \sum_{n=1}^{N} \left(d_{i} - F(z_{i}) \right)^{2} + \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} - F(z_{i}) \right)^{2} + \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} - F(z_{i}) \right)^{2} + \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} - F(z_{i}) \right)^{2} + \frac{1}{2} \left(\frac{1}{2} - F(z_{i}) \right)^{2} + \frac$ uso called the "Jikhonon) o j un constrained > o j x.s are unreliable also called 8 (F) io Choose between (0,00) Normalize/26(0,1) i.e., a fraction

 $d(\xi(F,h)) = d(\xi(F,h) + \lambda d(\xi(F,h)) = 0)$ $d(\xi(F,h)) = \frac{1}{2} \frac{d}{d\beta} \sum_{i=1}^{N} [d_i - F(x_i) - \beta h(x_i)]$ $d(\xi(F,h)) = \frac{1}{2} \frac{d}{d\beta} \sum_{i=1}^{N} [d_i - F(x_i) - \beta h(x_i)]$ $d(2_s(F,h)) =$ $- \sum_{i=1}^{N} \left[d_{i} - F(\underline{x}_{i}) - \beta h(\underline{x}_{i}) \right] h(\underline{x}_{i})$ $- \sum_{i=1}^{N} \left(d_{i} - F(\underline{x}_{i}) \right) h(\underline{x}_{i})$ $- \sum_{i=1}^{N} \left(d_{i} - F(\underline{x}_{i}) \right) h(\underline{x}_{i})$ $- \left(h, \left(d - F(\underline{x}_{i}) \right) \delta(\underline{x}_{i} - \underline{x}_{i}) \right)$

Euler-Lagrange equation
finen a linear differential operator D, we can find a
uniquely determined adjoint operator by
$$\overline{D}/for$$
 any
pair of functions $u(x)$ and $v(x)$ that are sufficiently
differentiable (upto a certain degree) ξ satisfy proper
boundary conditions
 $\int u(x) D v(x) dx = \int v(x) \overline{D} u(x) dx$
 \overline{R}^m D is a matrix. \overline{R}^m

With
$$u(\underline{x}) \stackrel{a}{=} DF(\underline{x})$$

and $\underline{V}(\underline{x}) \stackrel{a}{=} h(\underline{x})$
 $d \stackrel{g}{=} (F, h) = \int h(\underline{x}) \widetilde{D} DF(\underline{x}) d\underline{x}$
 $R^{m} v(\underline{x}) \quad u(\underline{x}) \int h(\underline{x}) f_{m} ter fret$
 $I \stackrel{m}{=} \langle h(\underline{x}), \widetilde{D} DF \rangle \mathcal{H}$ for fret
 $f_{m} ter fret$
 $f_{m} t$

$$d \ \mathcal{E}(F, h) = \left(\begin{array}{c} h \end{array} \right) \left[\begin{array}{c} \overline{D}DF - \frac{1}{2} \\ \overline{D}DF - \frac{1}{2} \\ \overline{D}DF \\ \overline{z} \\ \overline{z}$$

For a given linear differential operator L, $G_1(\mathbb{Z},\overline{\mathcal{E}})$ Satisfies the following properties: (Courant & Hilbert) For a fixed Ξ , $G_1(\Xi, \Xi)$ is a function of Ξ Satisfying the boundary conditions 2) $\mathcal{E}_{xcept} \otimes \mathcal{R} = \mathcal{Z}, \text{ the derivatives of } G_{1}(\mathcal{Z}, \mathcal{Z})$ w.r.t x are all continuous; the # of derivatives is determined by L

 $LG(\underline{x},\underline{z}) = 0$ <u>everywhere</u> except $Q = \underline{x} = \underline{z}$, where it is singular. 3) $LG(2, \overline{z}) = S(2-\overline{z}) = \mathbb{Z} = \overline{z} = \overline{z}$ The function $G(\underline{x}, \underline{z})$ is called the Green's function of operator L. Similar to the inverse of a matrix eqn!

Let
$$\varphi(\underline{x})$$
 be a continuous/piecevise continuous
function of $\underline{x} \in \mathbb{R}^m$, then

$$\begin{aligned}
(\text{laim}: \overline{F}(\underline{x}) &= \int G_1(\underline{x}, \overline{z}) \varphi(\overline{z}) d\overline{z} & \text{is a solution} \\
\overline{R}^m & L \quad \overline{F}(\underline{x}) &= \varphi(\underline{x}) \\
\text{Let us verify the validity !}
\end{aligned}$$

Let us look into the regularization problem $L = \widetilde{\mathcal{D}} \mathcal{D}$
$$\begin{split} & \varphi\left(\frac{z}{2}\right) = \frac{1}{2} \sum_{i=1}^{N} \left(d_{i} - F\left(\frac{z}{2}\right)\right) \delta\left(\frac{z}{2}, -\frac{z}{2}\right) \\ & f_{z} = 1 \int P_{log} in \\ F_{z}\left(\frac{z}{2}\right) = \int G_{z}\left(\frac{z}{2}, \frac{z}{2}\right) \varphi\left(\frac{z}{2}\right) dz \end{split}$$

$$F_{\lambda}(\mathbf{x}) = \int G(\mathbf{x}, \mathbf{z}) \sum_{i=1}^{l} \sum_{i=1}^{N} [d_{i} - F(\mathbf{x}_{i})] S(\mathbf{x}_{i} - \mathbf{z})$$

$$R^{m} \qquad d\mathbf{z}$$

$$= \frac{1}{\lambda} \sum_{i=1}^{N} [d_{i} - F(\mathbf{x}_{i})] \int G_{i}(\mathbf{x}, \mathbf{z}) S(\mathbf{x}_{i} - \mathbf{z}) d\mathbf{z}$$

$$R^{m} \qquad G_{i}(\mathbf{x}, \mathbf{z}_{i})$$

$$F_{\lambda}(\mathbf{x}) = \frac{1}{\lambda} \sum_{i=1}^{N} (d_{i} - F(\mathbf{x}_{i})) G_{i}(\mathbf{x}, \mathbf{z}_{i})$$

The minimizing function to the regularization froblem is a linear superposition of N-green functions. The points \underline{x} is represent the centers of the the points \underline{x} is represent the centers of the expansion and $(d_i - F(\underline{x}_i))/2$ represent the weights of the expansion $SG(\mathcal{Z},\mathcal{Z};)$ N centered Q $\mathcal{Z} = \mathcal{Z}_{v}^{-}$ constitute $\{G(\mathcal{Z},\mathcal{Z};)\}_{i=1}^{N}$ the basis of a subspace of Smooth f_{n} . Where the solute the regularization problem lies

$$\frac{\text{How}}{\text{Let}} \quad \text{de we} \quad \text{determine the Goeffte} (\text{wi})?$$

$$\frac{\text{Let}}{\text{Let}} \quad \text{wi} \quad \stackrel{\circ}{=} \quad \frac{1}{2} \left[d_i - f(\underline{x}_i) \right]; \quad i = 1, \dots, N$$

$$\frac{\text{Continuous}}{f_2(\underline{x})} = \sum_{i=1}^{N} w_i \quad G_1(\underline{x}, \underline{x}_i) \quad \bigoplus_{i=1}^{N} (\frac{1}{2} - \frac{1}{2}) \quad \bigoplus_{i=1}^{N} (\frac{1}{2} -$$

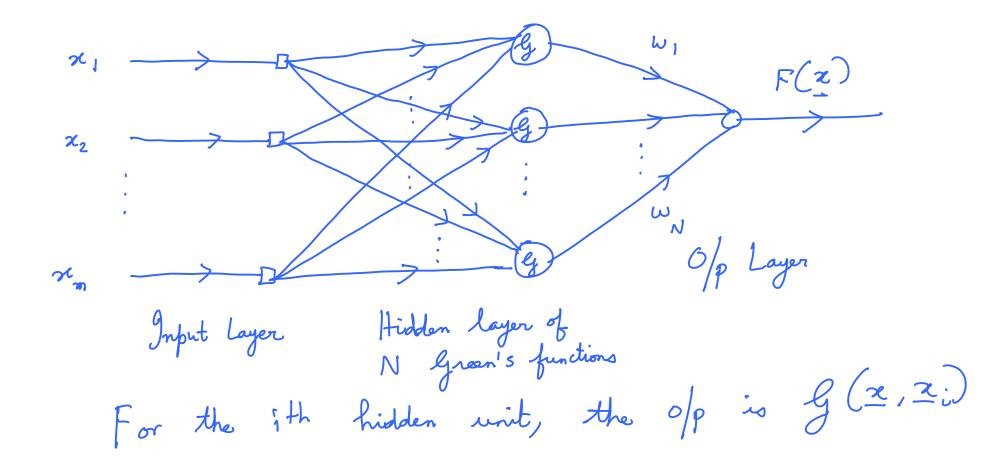
Writing in matrix form, $\omega = \frac{1}{\lambda} \left[\frac{d}{d} - F_{\lambda} \right] = \frac{F_{\lambda}}{F_{\lambda}} = \frac{d - \lambda w}{d - \lambda w}$ $F_{z} = G_{w}$ $G_{z} = G_{z} (z_{z}, z_{z})$ $\therefore \left(G_{1} + \lambda \mathcal{I}\right) \stackrel{\omega}{=} = \frac{d}{-}$ But, the adjoint of the linear differential operator L $L = L \implies G_1(X_1, X_2) = G_1(X_2, X_2)$

However, all functions in the null space of D are invisible to the Smoothing term/ regulatory Constrainte || DF||² and is problem dependent.

The RBF happens to be a special case of Green's function that is translationally and rotationally invariant i.e., if $G_1(2, 2;) = G_1(||2-2;||)$ For RBF, $N = \sum_{i=1}^{N} w_i G_i \left(\left\| \underline{x} - \underline{x}_i \right\| \right)$ $F_{\lambda}(\underline{x}) = \sum_{i=1}^{N} w_i G_i \left(\left\| \underline{x} - \underline{x}_i \right\| \right)$ $\left(\text{Linear function space} \right) \left(\frac{\text{depends}}{\text{data!}} \right)$

Assuming Gaussian units $F_{3}(x) = \sum_{i=1}^{N} w_{i} \exp \left(-\frac{1}{2\sigma_{i}^{2}} \left\| \frac{x}{x} - \frac{x}{z} \right\|^{2}\right)$ i = 1 $w_{i} exp \left(-\frac{1}{2\sigma_{i}^{2}} \left\| \frac{x}{x} - \frac{x}{z} \right\|^{2}\right)$

Kegularization Networks The idea of Green's from G(Z,Zi) centered O Zi gives us a feel of the MW structure) One hidden with for each data point $\underline{\mathcal{X}}_{i}^{*}$) $i = 1, \dots, N$. The o/p of the hidden what is $G(\underline{\mathcal{X}}, \underline{\mathcal{X}}_{i})$. 2) The o/p of the n/w is $\neq (x)$ by Combining the Green's functions



By imposing certain constraints such as (the definite) property and making $G_1(.)$ to be notationally invariant, we get the Gaussian form used in RBF $\eta'w$. RBF n/ws ws = b X 0/p layer Xm Hidden layer

3 desirable properties for regularization Mus from approximation theory perspective 1) It is a universal approximator; approx. any multivariate Continuous fn very well. Since the approx. scheme is derived from regularization theory & linear in the unknown coeffte, the unknown 2) non-linear function can be always be approx. Hrough an appropriate choice of the coeffts.

The soln. computed by a regularization n/w is optimal, and based on minimizing a functional 3)