Kernel PCA Most of PCA involve computations in the i/p space or data space.

We can also do a PCA in the Jeature space

Which is non-linearly related to the ifp space

which is non-linearly related to the ifp space

To a PCA in the feature

m, space

y(1)

y(xi) \in R

m > m

year

year

feature space

Let $\varphi: \mathbb{R}^m \longrightarrow \mathbb{R}^m$ $\varphi(z_j)$ denotes the image of z_j induced in the feature space by the non-linear map $\varphi(\cdot)$ Given $\{x_i, x_i, x_i\}$ we compute $\{x_i, x_i\}$ $\{x_i, x_i\}$ we compute $\{x_i, x_i\}$ $\{x_i, x_i$ We can compute a correlation matrix in the feature space $\mathbb{R} = \frac{1}{N} \sum_{i=1}^{N} \varphi(\underline{x}_i) \varphi(\underline{x}_i)$ As with the ordinary P(A), ensure $\frac{1}{N} \sum_{i=1}^{N} \varphi(x_i) = 0$ (Remove The bias priority R)
to computing R) can proceed by solving

R q = 2 q where 2: eigen value of \mathbb{R} 3: eigen value of \mathbb{R} 4: Corr. eigen \mathbb{R} vector of \mathbb{R}

For $2 \neq 0$, satisfying 1 \exists a corresponding set of Coeffts $\{2,j\}_{j=1}^{N}$ $\mathcal{F}_{j=1}$ \mathcal{F}_{j} \mathcal{F}_{j} \mathcal{F}_{j} \mathcal{F}_{j} \mathcal{F}_{j} Plug A, 2 in 1 $\sum_{i=1}^{N} \sum_{j=1}^{N} \chi_{j} \varphi(z_{i}) \times (z_{i}, z_{j}) = N \chi_{j} \chi_{j} \varphi(z_{j})$ $= \sum_{i=1}^{N} \sum_{j=1}^{N} \varphi(z_{i}) \times (z_{i}, z_{j}) = \varphi^{T}(z_{i}) \varphi(z_{j})$

Premultiply I b.s by $y^T(z_k)$ $\sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{x_{i}}{x_{i}} \frac{x_{i}}{x_{j}} \right) \times \left(\frac{x_{i}}{x_{i}} \frac{x_{j}}{x_{j}} \right)$ $= \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{x_{i}}{x_{i}} \frac{x_{j}}{x_{j}} \right)$ $= \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{x_{i}}{x_{i}} \frac{x_{j}}{x_{j}} \right)$ $= \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{x_{i}}{x_{i}} \frac{x_{j}}{x_{j}} \right)$ $= \sum_{i=1}^{N} \left(\frac{x_{i}}{x_{i}} \frac{x_{i}}{x_{j}} \right)$ $= \sum_{i=1}^{N} \left(\frac{x_{i}}{x_{i}} \frac{x_{i}}{x_{i}} \right)$ $= \sum_{i=1}^{N}$ Let $2 \times 3 \times 2 \times \cdots \times 3 \times N$ denote the eigen values of the kernel matrix K $2 \times 3 \times 10^{-1}$ 1×10^{-1} jth eigen value of the R Correlation matrix R where It is the eigen value own the Simplified riges value $K_{\mathcal{L}} = \lambda_{\mathcal{L}}$ $(\lambda = N\tilde{\lambda})$

The vector disto normalized. This requires eigen vector of the corr. matrix R to be normalized to $\tilde{q}_k \tilde{q}_k = 1$ $+ k = 1, \dots, N$ $\lambda_{k}^{T} \lambda_{k} = \frac{1}{\lambda_{k}}$

Verify:

Summary of the kernel PCA Ð

Algo

Given training samples {\(\int \cdot i \) \(i = 1 \) the NXN Kernel matrix $K := \left[K \left(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \right) \right]$ $K(2i, 2j) = y^T(2i)y(2j)$ Solve the eigen value problem

K \(\precede{\pi} = \pi \)

Leigen value problem

Eigen vector

eigen value

eigen value 2)

Normalize the eigen vectors $d_k^T d_k = x_k$ For extraction of principal components of a test vector $\frac{x}{2k}$ $\varphi(z) = \langle q_k, \varphi(z) \rangle$ $\alpha_k = q_k^T \varphi(z) = \langle q_k, \varphi(z) \rangle$

Hebbian based max eigen filter

simple neuronal model I/p process $y[m] = \sum_{i=1}^{\infty} \omega_i[m] \times [m]$ x,[m] Jrom Hebt 15 learning rule

[n+i] = ω: [n) + η y [n] x: [m]

[post prio synaptic synaptic synaptic synaptic signal

In the original form of Helt's rule, the rule is unbounded and physically inadmissible Oja (1982) did a normalization to the Wormalize)

Wi[n] + 7 y[n] x;[n]

L_norm $W: [n+1] = \frac{m}{2} \left(\frac{m}{2} \left(w: [n] + \eta \right) y [n] x: [n]^{2} \right)^{2}$ Let us explore the stability analysis of this update

Consider the denominator

 $\sqrt{\frac{m}{2}} \frac{u^2 [n] + \eta^2 y^2 [n] \times [m] + 2 \eta u^2 [n] y [n] \times [n]}{\approx 0}$ $\sqrt{\frac{m}{2}} \frac{u^2 [n]}{u^2 [n]} + 2 \eta y [n] \sum_{i=1}^{m} \frac{u^2 [n]}{y [n]} \times [n]$

$$\int_{\mathbb{R}^{2}} \frac{1}{\sqrt{1+2}} \int_{\mathbb{R}^{2}} \frac{1$$

At each time
step n, weight vector i.e., | w[n] | = 1. + n
is normalized where \underline{w} $[m] = [w, [m] --. w_m[n]$ The denominator simplifies to (1- 7 y [n]) $(-\eta)^{2} = (\omega; [n] + \eta)^{2} = (-\eta)^{2} = ($ w; [n+i] = w; [n] + n y [n] (x; [n] - w; [n] y [n])

The above simplification is upto a x; [n]

first power of n

One can think of Oja's approximation as a modification when the changes to the form x:[n] = x:[n] - y[n]w;[n] forgetting term $x:[n] = w:[n] + \eta y[n] x[n]$ $w:[n+1] = w:[n] + \eta y[n] x[n]$ $w:[n+1] = w:[n] + \eta y[n] x[n]$ Re written Hebbian that stabilizes the update on stabilizes the update to

Let us do a matrix formulation $X[n] = \left[x_1[n] \times_2[n] - \dots \times_m[n] \right]^{T}$ $\omega [n] = \left[\omega_{i}[n] - \cdots \right]$ olp $y[n] = xe^{T[n]} \omega[n]$ or $\omega^{T[n]} x[n]$ $\omega^{T[n]} = xe^{T[n]} \omega[n]$ or $\omega^{T[n]} = xe^{T[n]} \omega[n]$ $\omega^{T[n]} = xe^{T[n]} \omega[n]$ or $\omega^{T[n]} = xe^{T[n]} \omega[n]$ $\omega^{T[n]} = xe^{T[n]} \omega[n]$ or $\omega^{T[n]} = xe^{T[n]} \omega[n]$ $\omega^{T[n]} = xe^{T[n]} \omega[n]$ or $\omega^{T[n]} = xe^{T[n]} \omega[n]$ $\omega^{T[n]} = xe^{T[n]} \omega[n]$ or $\omega^{T[n]} = xe^{T[n]} \omega[n]$

Dugging y [n] in terms of w[n] and x[n] $\underline{\omega} \left[n+i \right] = \underline{\omega} \left[n \right] + \underline{\eta} \left(\underline{\omega} \left[n \right] \times \left[n \right]$ The above is a non-linear Stochastic difference equation !

Asymptotic Stability Theorem

Consider the general Stochastic approx. algo

W[n+1] = W[n] + n(n) h(w(n), x(n))

M [n+1] = W[n] + n(n) h(w(n), x(n))

The steps

The scalars

Left is a determination function with some regularity. Conditions

The following conditions must be satisfied The sequence y[n] is a decreasing seq. of the real nos $\lim_{n \to \infty} \eta [n] = 0$ $\lim_{n \to \infty} \sigma [n] = 0$ Controls the Convergence

p>1

rate 2) The sequence of parameter vectors w is bounded with probability '1' The update function $h(\omega, x)$ is continuously differentiable w.r.t. w and x derivatives are bounded in time. The limit $h(\underline{w}) = \lim_{n \to \infty} E[h(\underline{w},\underline{x})]$ ξ_{p} putation is over the p.d.f of random data vector \underline{x}

There is a locally asymptotically stable

(in the Lyapunov sense) Solution to the

Ordinary differential eqn (ODB)

d w (t) = h (w(t)) - (A)

Let _9 be the soln to (A) with the basin of attraction B(9). The parameter vector w (n) enters a Compact subset A of the basin of attraction, infinitely after, with prob. I Basin of attraction

Basin of attraction

Basin of attraction

BCD called

brasin of attraction

The asymptotic stability theorem states that lim w[n] = -9 [infinitely after prof. 1] No idea how many iterations are needed

Stability analysis of the max eigen filter Jo satisfy Condition (1) of the stability theorem,

Let $\eta[n] = \frac{1}{n}$ $h(\omega, x) = \frac{x(n)}{x(n)} \frac{y(n) - y^2(n)}{\omega(n)} \frac{\omega(n)}{\omega(n)}$ $= \frac{x(n)}{x(n)} \frac{x^{T(n)} \omega(n)}{\omega(n)} \frac{\omega(n)}{\omega(n)} \frac{\omega(n$

B) Satisfies condition 3 of the Stability thm. Taking expectation w.r.t. pdf of X $\frac{1}{n} = \lim_{n \to \infty} E\left(x(n)x^{T}(n)u(n) - \left(u^{T}(n)x(n)x^{T}(n)u(n)\right)u(n)\right)$ $= \lim_{n \to \infty} E\left(x(n)x^{T}(n)u(n) - \left(u^{T}(n)x^{T}(n)u(n)\right)u(n)\right)$ $= \lim_{n \to \infty} E\left(x(n)x^{T}(n)u(n)\right)u(n)$ $= \lim_{n \to \infty} E\left(x(n)$

 $\frac{d}{dt} W(t) = h \left(w(t) \right) \left(\frac{NOTE}{dt} \right) \frac{d}{dt} \frac{w(t)}{assuming} \frac{d}{at} \frac{d}{assuming} \frac{d}{at} \frac{d}{at} \frac{d}{assuming} \frac{d}{at} \frac{d}{at} \frac{d}{assuming} \frac{d}{at} \frac{d}{$ $= R \omega(t) - \left[\omega^{T}(t) R \omega(t) \right] \omega(t)$ Let w (t) be expanded in terms of the complete set of orthonormal eigenvectors of R

(Eigen expansion) R=1 time varying, projection of Now, $R - 2k = \lambda k + 2k$ $-2k = \lambda k + 2k$ $-2k = \lambda k + 2k$

$$\frac{d}{dt} \frac{d}{dt} \frac{\partial_k(t)}{\partial k} = \frac{1}{h(w(t))}$$

$$\frac{d}{dt} \frac{\omega(t)}{u(t)} \frac{\partial_k(t)}{\partial t} = \frac{1}{h(w(t))} \frac{1}{h(w(t))}$$

$$\frac{d}{dt} \frac{\omega(t)}{u(t)} \frac{1}{u(t)} \frac{1}{u(t$$

Consider experim
$$W^{T(t)}R$$
 $W(t)$

angular experim $W^{T(t)}R$ $W(t)$
 $W(t$

 $\sum_{k=1}^{\infty} \lambda_{k} O_{k}^{2} (t)$ (t) R w (t)] w (t) $\sum_{k=1}^{m} \lambda l O_k^2 (t) \sum_{k=1}^{3}$ (t) -9 k

w(t) R w(t) Thus, $\frac{\int nus}{h(u(t))^{2}} = \sum_{k=1}^{m} \lambda_{k} O_{k}(t) 2_{k} - \sum_{l=1}^{m} A_{l} O_{k}(t) 2_{k}$ $= \sum_{k=1}^{m} A_{k} O_{k}(t) 2_{k} - \sum_{l=1}^{m} A_{l} O_{k}(t) 2_{k}$ Th (w(t)) Written carefully, $\frac{1}{h} \left(\frac{\omega(t)}{2k} \right) = \frac{1}{h} \left(\frac{\omega(t)}{2k} \right) = \frac{1}{h}$ Sq m are or thonormal = linear independence vectors

Legar (4) is a linear combination of linearly independent vectors whose coeffts are governed by the vectors whose coeffts are given by m differential equal given by A (4) differentian $= \frac{1}{2} \times \frac{1}{2} \times$

1 < k \le m Case 1 ! For this treatment $1 \leq k \leq m$ let $\angle_{R}(t) \stackrel{\triangle}{=} \frac{\partial_{R}(t)}{\partial_{A}(L)}$ O, (t) \$ 0 and w(s) is randomly chosen w. prob 1

$$\frac{d\lambda_{k}(t)}{dt} = \frac{1}{Q_{k}(t)} \frac{d\theta_{k}(t)}{dt} - \frac{Q_{k}(t)}{dt} \frac{d\theta_{i}(t)}{dt}$$

$$\frac{1}{Q_{k}(t)} \frac{d\theta_{k}(t)}{dt} - \frac{Q_{k}(t)}{Q_{k}(t)} \frac{d\theta_{i}(t)}{dt}$$

$$\frac{1}{Q_{i}(t)} \frac{d\theta_{k}(t)}{dt} = \frac{1}{Q_{i}(t)} \left[\frac{\lambda_{k}(t)}{\lambda_{i}(t)} - \frac{Q_{k}(t)}{Q_{i}(t)} \right] \frac{\lambda_{k}(t)}{Q_{i}(t)}$$

$$\frac{1}{Q_{i}(t)} \frac{d\theta_{k}(t)}{dt} = \frac{1}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)}$$

$$\frac{1}{Q_{i}(t)} \frac{d\theta_{k}(t)}{dt} - \frac{Q_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)}$$

$$\frac{1}{Q_{i}(t)} \frac{d\theta_{k}(t)}{dt} - \frac{Q_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}(t)}{Q_{i}(t)} \frac{\lambda_{k}$$

Summing the terms in 5 (a) 4 5 (b) $=\frac{O_{k}(t)}{O_{k}(t)}$ ddk(t) = = $\langle k \rangle + \langle k \rangle = \langle k \rangle + \langle k \rangle + \langle k \rangle + \langle k \rangle = \langle k \rangle + \langle k$ Assume It, is

Assuming eigen values of R are distinct and $\lambda_1 > \lambda_2 > \cdots > \lambda_m$ $\begin{cases} \lambda_1 - \lambda_k \\ \lambda_1 - \lambda_k \end{cases} \propto \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_3 - \alpha_4 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_1 \\ \lambda_2 - \alpha_2 \\ \lambda_3 - \alpha_4 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_3 - \alpha_4 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_3 \\ \lambda_3 - \alpha_4 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_3 - \alpha_4 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_3 \\ \lambda_1 - \alpha_4 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_3 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_3 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_3 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_3 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_3 \\ \lambda_1 - \lambda_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_1 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases}$ $\begin{cases} \lambda_1 - \lambda_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \lambda_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \alpha_2 \end{cases} = \begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \\ \lambda_2 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \\ \lambda_2 - \alpha_2 \\ \lambda_2 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_1 - \alpha_2 \\ \lambda_2 - \alpha_2 \\ \lambda_2 - \alpha_2 \end{cases}$ $\begin{cases} \lambda_1 - \alpha_1 \\ \lambda_2 - \alpha_2 \\ \lambda_2 - \alpha_2 \\$

CASE 2:
$$k = 1$$

$$\frac{1}{2} \frac{1}{2} \frac{$$

i. The governing equation is $\frac{d\theta_{1}(t)}{d\theta_{2}(t)} = \lambda_{1}\theta_{1}(t)\left(1-\theta_{1}^{2}(t)\right) \left(asymptotically\right)$ To analyze the stability of this system, we need a positive definite function called Lyapunov function. (Part of non-linear dynamics)

Let S be the state vector of an autonomous system Let V(t) be the Lyapunov function of the system An equillibrium state $5^{(eq)}$ of the system is automatically for $\underline{s} \in \mathcal{U} - \underline{s}^{(eq)}$ dV(t) <0 Where U is a small neighborhood around 3

For our problem at hand, the has a Lyapunov function given by differential egn $V(t) = \begin{bmatrix} o_1^2(t) - 1 \end{bmatrix}^2$ To validate the assertion, (1) $\frac{dV(t)}{dt}$ <0 $\frac{dV(t)}{dt}$ has a minimum (2)

Now
$$\frac{dV(t)}{dt} = 40, (t) \left(\frac{\partial^{2}(t) - 1}{\partial t} \frac{d\theta_{1}(t)}{dt} \right) - \frac{\partial^{2}(t)}{\partial t}$$

But $\frac{dO_{1}(t)}{dt} = \lambda_{1} 0, (t) - O_{1}(t) \sum_{k=1}^{m} \lambda_{k} 0^{2}k$

$$= \lambda_{1} 0, (t) - \lambda_{1} 0, (t) \sum_{k=1}^{m} \lambda_{k} 0^{2}k$$

$$= \lambda_{1} 0, (t) - \lambda_{1} 0, (t) \sum_{k=1}^{m} \lambda_{k} 0^{2}k$$

$$= \lambda_{1} 0, (t) - \lambda_{1} 0, (t) \sum_{k=1}^{m} \lambda_{k} 0^{2}k$$

$$= \lambda_{1} 0, (t) \left(1 - O_{1}^{2}(t) \right)$$

$$= -\lambda_{1} 0, (t) \left(O_{1}^{2}(t) - 1 \right)$$

$$= -\lambda_{1} 0, (t) \left(O_{1}^{2}(t) - 1 \right)$$

$$= -\lambda_{1} 0, (t) \left(O_{1}^{2}(t) - 1 \right)$$

$$= -\lambda_{1} 0, (t) \left(O_{1}^{2}(t) - 1 \right)$$

$$= -\lambda_{1} 0, (t) \left(O_{1}^{2}(t) - 1 \right)$$

$$= -\lambda_{1} 0, (t) \left(O_{1}^{2}(t) - 1 \right)$$

$$\frac{dV(t)}{dt} = -4 \lambda_1 O_1^2(t) \left(O_1^2(t) - 1\right)^2$$
I som the +ve definite property of R i.e., correlation matrix

since eigen value λ_1 is +ve

dV(t) < 0

V(t) has a minimum (a) $O_1(t) = \pm 1$, and So the 2 nd condition is also satisfied.

 $\theta_1(t) \longrightarrow \pm 1$ $t \gg \infty$

1 < k < m (Case A)

Note this carefully

Case 1 of the analysis $\Theta_k(t) \longrightarrow 0$

2 conclusions can be drawn The only principal mode of the stochastic approx. algo. described in $W(n+1) = W(n) + \eta \left(\pi(n) \pi^{T}(n) w(n) \pi^{T}(n) \pi^{T}(n$

O, (t) will converge to ±1 Tormally stated, where 2, is the $\omega(t) \longrightarrow 2$ normalized eigenvector associated with the largest eigen value 2, of the Correlation matrix R.

According to Condition 6 of the asymptotic Stability theorem (AST),] a subset A of the set of Vectors / lim w (n) = 91 (i.o. with prob.1)

n > 00

infinitely often To satisfy condition 2 of the AST, we hard limit the entries of w(n) so that their magnitudes remain below a threshold 'a'. $|w(n)| = \max_{j} |w_{j}(n)| \le a$

Let A be compact subset of R^m defined by the set of vectors whose norm < a. Sanger (1989) Showed that If $||w^{(n)}|| \le a$ and the constant is Sufficiently large, then $||w^{(n+1)}|| < ||w^{(n)}||$ with prob. 1 As iterations $n \to \infty$, w(m) will eventually be within A & will remain inside A i.o. with n-1Basin of attraction $B(\underline{q}_1)$ includes all vectors with norm bounded $\Longrightarrow A \in B(\underline{q}_1)$

Kest of all the Conditions in AST are met,

W (m) Converges to 9 with prob. 1 and has λ_1 as the associated eigen value A Single neuron under normalized Hebbian hodate, aligns to the principal eigen vector of the Correlation matrix

Summary of the Hebbian-based eigen filter For stationary inputs \times (n), a single neuron extracts the principal eigen component of the Correlation matrix R. is related to the variance of the γ is related to the variance of the γ is γ in γ in

2) Per Oja's update, Hebbian based Jilter Converges to a fixed point with